Advertisement

In situ one pot synthesis of nanoscale TiO2-anchored reduced graphene oxide (RGO) for improved photodegradation of 5-fluorouracil drug

  • S. V. Nipane
  • Sang-Wha Lee
  • G. S. Gokavi
  • A. N. Kadam
Article
  • 78 Downloads

Abstract

This paper reports an ‘in situ’ precipitation-reduction reaction for the scalable production of nanoscale TiO2-anchored reduced graphene oxide (RGO–TiO2) nanocomposites. RGO–TiO2 nanocomposites with different weight ratios were prepared by the simultaneous hydrolysis of titanium tetraisopropoxide (TTIP) and the chemical reduction of graphene oxide. The as-prepared samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Ultraviolet–Visible diffused reflectance spectroscopy, and photoluminescence. The most commonly used cytostatic (antineoplastic) drug in cancer therapies [5-fluorouracil (5-FU)] was used as a model pollutant. To examine the effects of RGO, the photocatalytic degradation of 5-FU was examined by varying the operational parameters, such as catalyst amounts, solution pH, effect of scavenger, and TiO2 mass contents. Under the optimal experimental conditions, 97% of the 5-FU present was photodegraded over RGO–TiO2 (RGO–T2) within 90 min under UV light. The RGO–TiO2 composites (RGO–T2) exhibited two times higher photocatalytic activity than that of pure TiO2. The improved photocatalytic activities of the RGO–TiO2 nanocomposites were attributed to the homogeneous distribution of TiO2 nanoparticles over the surface of the RGO nanosheet, enhancement of the light absorption intensity, and suppressed recombination of photoinduced electron–hole pairs.

Notes

Acknowledgements

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (20174030201530). One of the author, GSG acknowledge Department of Science and Technology and University Grants Commission, New Delhi, for providing grants to the Department of Chemistry, Shivaji University, Kolhapur, under FIST and SAP programs, respectively.

References

  1. 1.
    H.H. Lin, A.Y. Lin, Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment. Water Res. 48, 559–568 (2014)CrossRefGoogle Scholar
  2. 2.
    Q. Wang, Y. Du, L. Fan, Properties of chitosan/poly(vinyl alcohol) films for drug-controlled release. J. Appl. Polym. Sci. 96, 808–813 (2005)CrossRefGoogle Scholar
  3. 3.
    J.L. Arias, M.L. Voita, A.V. Degado, M.A. Riuz, Iron–ethylcelullose (core shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf. B 77, 111–116 (2010)CrossRefGoogle Scholar
  4. 4.
    I.J. Buerge, H.R. Buser, T. Poiger, M.D. Muller, Occurrence and fate of the cytostatic drugs cyclophosphamide and Ifosfamide in wastewater and surface waters. Environ. Sci. Technol. 40, 7242–7250 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Kovalova, C.S. Mcardell, J. Hollender, Challenge of high polarity and low concentrations in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry. J. Chromatogr. A. 1216, 1100–1108 (2009)CrossRefGoogle Scholar
  6. 6.
    A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, C.D. Bathula, A.V. Tran, S.W. Lee, Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. J. Ind. Eng. Chem. 61, 78–86 (2018)CrossRefGoogle Scholar
  7. 7.
    M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 40, 5489–5496 (2014)CrossRefGoogle Scholar
  8. 8.
    V.V. Kondalkar, S.S. Mali, R.M. Mane, P.B. Dandge, S. Choudhury, C.K. Hong, P.S. Patil, S.R. Patil, J.H. Kim, P.N. Bhosale, Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: identification of the degradation products and determination of the toxicity level. Ind. Eng. Chem. Res. 53, 18152–18162 (2014)CrossRefGoogle Scholar
  9. 9.
    H.M. Yadav, J.S. Kim, S.H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J. Chem. Eng. 33, 1989–1998 (2016)CrossRefGoogle Scholar
  10. 10.
    R.M. Mohamed, UV-assisted photocatalytic synthesis of TiO2-reduced graphene oxide with enhanced photocatalytic activity in decomposition of sarin in gas phase. Desalination Water Treat. 50, 147–156 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Kadam, R. Dhabbe, D. Shin, K. Garadkar, J. Park, Sunlight driven high photocatalytic activity of Sn doped N-TiO2, nanoparticles synthesized by a microwave assisted method. Ceram. Int. 43, 5164–5172 (2017)CrossRefGoogle Scholar
  12. 12.
    H.M. Yadav, T.V. Kolekar, S.H. Pawar, J.S. Kim, Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent ligh. J. Mater. Sci. 27, 57–66 (2016)Google Scholar
  13. 13.
    T. Lavanya, M. Dutta, K. Satheesh, Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment. Sep. Purif. Technol. 168, 284–293 (2016)CrossRefGoogle Scholar
  14. 14.
    H.M. Yadav, J.S. Kim, Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloys Compd. 688, 123–129 (2016)CrossRefGoogle Scholar
  15. 15.
    B.G. Ruiz, P. Ribao, N. Diban, M.J. Rivero, I. Ortiz, A. Urtiaga, Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst. J. Hazard. Mater. 344, 950–957 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Liang, H. Wang, H.S. Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701–705 (2010)CrossRefGoogle Scholar
  17. 17.
    D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)CrossRefGoogle Scholar
  18. 18.
    C. Chen, W.M. Cai, M.C. Long, B.X. Zhou, Y.H. Wu, D.Y. Wu, Y.J. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4, 6425–6432 (2010)CrossRefGoogle Scholar
  19. 19.
    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  20. 20.
    I. Cojocaru, O.L. Cornelia, A. Spac, G. Popa, L. Palade, I. Popovici, The validation of the uv spectrophotometric method for the assay of 5 fluorouracil. Farmica 60, 379–385 (2012)Google Scholar
  21. 21.
    C. Kangmin, Z. Jiang, J. Qin, Y. Jiang, R. Li, H. Tang, X. Yang, Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets, with nearly 100% exposed (001) facets. Ceram. Int. 40, 16817–16823 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)CrossRefGoogle Scholar
  23. 23.
    Y. Liu, Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Adv. 4, 36040–36045 (2014)CrossRefGoogle Scholar
  24. 24.
    H.P. Mungse, S. Verma, N. Kumar, B. Sain, O.P. Khatri, Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012)CrossRefGoogle Scholar
  25. 25.
    M.S. Sher-Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 4, 3893–3901 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Yan, T. Zhao, X. Li, C. Hun, Synthesis of Cu-doped nano-TiO2 by detonation method. Ceram. Int. 41, 14204–14211 (2015)CrossRefGoogle Scholar
  28. 28.
    Q. Zhang, N. Bao, X. Wang, X. Hu, X. Miao, M. Chaker, D. Ma, Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration. Sci. Rep. 6, 38066–38081 (2016)CrossRefGoogle Scholar
  29. 29.
    R. Arrigo, M. Hävecker, S. Wrabetz, R. Blume, M. Lerch, J. McGregor, E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, A.K. Gericke, R. Schlögl, D.S. Su, Tuning the Acid/Base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 132, 9616–9630 (2010)CrossRefGoogle Scholar
  30. 30.
    F. Wang, K. Zhang, Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A 345, 101–107 (2011)CrossRefGoogle Scholar
  31. 31.
    K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Yu, T. Ma, G. Liu, B. Cheng, Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Trans. 40, 6635–6644 (2011)CrossRefGoogle Scholar
  33. 33.
    X.Y. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, Show compounds show chemical terms show biomedical terms graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20, 2801–2806 (2010)CrossRefGoogle Scholar
  34. 34.
    D.Y. Kim, B.N. Joshi, J.J. Parka, J.G. Leea, Y.H. Cha, T.Y. Seong, S.I. Noh, H.J. Ahn, S.S. Al-Deyabed, S.S. Yoon, Graphene–titania films by supersonic kinetic spraying for enhanced performance of dye-sensitized solar cells. Ceram. Int. 40, 11089–11097 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Nagaraju, K. Manjunath, S. Sarkar, E. Gunter, S.R. Teixeira, J. Dupont, TiO2-RGO hybrid nanomaterials for enhanced water splitting reaction. Int. J. Hydrog. Energy 40, 12209–12216 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, X. Hou, T. Sun, X. Zhao, Calcination of reduced graphene oxide decorated TiO2 composites for recovery and reuse in photocatalytic applications. Ceram. Int. 43, 1150–1159 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Tan, W. Ong, S. Chai, A.R. Mohamed, Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 8, 465–468 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Liu, Z. Wang, L. Liu, W. Chen, Reduced graphene oxide as capturer of dyes and electrons during photocatalysis: surface wrapping and capture promoted efficiency. Phys. Chem. Chem. Phys. 13, 13216–13221 (2011)CrossRefGoogle Scholar
  39. 39.
    A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta A. 133, 669–676 (2014)CrossRefGoogle Scholar
  40. 40.
    M.B. Suwarnkar, A.N. Kadam, G.V. Khade, N.L. Gavade, K.M. Garadkar, Modification of TiO2 nanoparticles by HZSM-5 for the enhancement in photodegradation of Acid Green 25. J. Mater. Sci. 27, 843–851 (2016)Google Scholar
  41. 41.
    N.L. Gavade, A.N. Kadam, Y.B. Gaikwad, M.J. Dhanavade, K.M. Garadkar, Decoration of biogenic AgNPs on template free ZnO nanorods for sunlight driven photocatalytic detoxification of dyes and inhibition of bacteria. J. Mater. Sci. 27, 11080–11091 (2016)Google Scholar
  42. 42.
    Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–Carbon composite materials? ACS Nano 4, 7303–7314 (2010)CrossRefGoogle Scholar
  43. 43.
    N. Jallouli, K. Elghniji, H. Trabelsi, M. Ksibi, Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arab. J. Chem. 10, 3640–3645 (2017)CrossRefGoogle Scholar
  44. 44.
    G. Zhu, L. Pan, T. Xu, Q. Zhao, Z. Sun, Cascade structure of TiO2/ZnO/CdS film for quantum dot sensitized solar cells. J. Alloys Compd. 509, 7814–7818 (2011)CrossRefGoogle Scholar
  45. 45.
    S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, J.B.J. Kenneth, Hydrothermal synthesis of Graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949–956 (2012)CrossRefGoogle Scholar
  46. 46.
    K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 21, 2233–2239 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Wua, Q. Jiab, W. Dai, Synthesis of RGO/TiO2 hybrid as a high performance photocatalyst. Ceram. Int. 43, 1530–1535 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kinetics and Catalysis Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Department of Chemical and Biological EngineeringGachon UniversitySeongnam-siRepublic of Korea
  3. 3.Department of ChemistrySmt. Kasturbai Walchand CollegeSangliIndia

Personalised recommendations