Defects driven photoluminescence property of Sm-doped ZnO porous nanosheets via a hydrothermal approach

  • Ge Zhang
  • Jihui LangEmail author
  • Qi Zhang
  • Qiang Han
  • Xiuyan Li
  • Jingshu Wang
  • Jian Wang
  • Jinghai YangEmail author


Samarium doped ZnO porous nanosheets were prepared via a hydrothermal approach and well characterized by X-ray diffraction (XRD), Raman spectroscopy, transition electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV–vis absorption spectroscopy. With increasing the Sm3+ doping concentrations, the crystallization of the thin nanosheets with irregular porosities became worse and the size of the porosities in the nanosheets gradually diminished due to the obstructions of Zn–O–Sm and the generated volatile gas. It was also found that the Sm3+ ions not only acted as the donors sinks to modulate the defects in host, but also expanded the visible light response of the ZnO. The slight redshift of UV NBE (near-band edge) emission as compared to undoped one indicated the band gap of the doped nanosheets became narrower due to the combination of the formed impurity band and the strong exchange interactions between electrons. The kinds of the defects as the deep-level-defect luminescent centers in DLE (deep-level emission) varied with the Sm3+ doping concentrations, and the detail change of the defects was also discussed in detail. These findings would be useful for the material design and defect modification for optical applications.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 51608226, 21776110), Program for the development of Science and Technology of Jilin Province (Item No. 20180101202JC), Program for Science and Technology of Education Department of Jilin Province (Item No. JJKH20170371KJ) and Program for the development of Science and Technology of Siping City (Item No. 2015065).


  1. 1.
    L. Zhu, Y.Q. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.Y. Lai, Y.P. Lan, T.C. Lu, Strong light-matter interaction in ZnO microcavities. Light: Sci. Appl. 2, e76 (2013) (1–7)CrossRefGoogle Scholar
  3. 3.
    M. Scuderi, V. Strano, C. Spinella, G. Nicotra, S. Mirabella, Low-cost synthesis of pure ZnO nanowalls showing three-fold symmetry. Nanotechnology 29, 135707 (2018) (1–8)CrossRefGoogle Scholar
  4. 4.
    D.D. Wang, G.Z. Xing, F. Yan, Y.S. Yan, S. Li, Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: experimental and computational insights. Appl. Phys. Lett. 104, 022412 (2014) (1–5)CrossRefGoogle Scholar
  5. 5.
    P.K. Shrestha, Y.T. Chun, D.P. Chu, A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles. Light: Sci. Appl. 4, e259 (2015) (1–7)CrossRefGoogle Scholar
  6. 6.
    G.Z. Xing, D.D. Wang, C.J. Cheng, M. He, S. Li, T. Wu, Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl. Phys. Lett. 103, 022402 (2013) (1–5)CrossRefGoogle Scholar
  7. 7.
    G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013)CrossRefGoogle Scholar
  8. 8.
    G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20(18), 3521–3527 (2008)CrossRefGoogle Scholar
  9. 9.
    S.V. Sergeyev, C.B. Mou, E.G. Turitsyna, A. Rozhin, S.K. Turitsyn, K. Blow, Spiral attractor created by vector solitons. Light: Sci. Appl. 3, e131 (2014) (1–8)CrossRefGoogle Scholar
  10. 10.
    R.S. Thompson, D.D. Li, C.M. Witte, J.G. Lu, Weak localization and electron-electron interactions in indium-doped ZnO nanowires. Nano Lett. 9(12), 3991–3995 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Gowri Manohari, C.X. Xu, A. Gowri Manohari, F.F. Qin, Efficient red up-conversion emission from Er3+-Yb3+ co-doped rubidium lead iodide perovskite nanowires with surface plasmons. Appl. Phys. Lett. 112, 054104 (2018) (1–5)CrossRefGoogle Scholar
  12. 12.
    L. Agarwal, B.N. Naik, S. Tripathi, Highly reflective Er-doped ZnO thin-film coating for application in a UV optical ring resonator. Nanotechnology 28, 465707 (2017) (1–11)CrossRefGoogle Scholar
  13. 13.
    J.H. Lang, Q. Han, J.H. Yang, C.S. Li, X. Li, L.L. Yang, Y.J. Zhang, M. Gao, D.D. Wang, J. Cao, Fabrication and optical properties of Ce-doped ZnO nanorods. J. Appl. Phys. 107, 074302 (2010) (1–4)CrossRefGoogle Scholar
  14. 14.
    L. Wang, Z.Y. Ji, J.J. Lin, P. Li, Preparation and optical and photocatalytic properties of Ce-doped ZnO microstructures by simple solution method. Mat. Sci. Semicon. Proc. 71, 401–408 (2017)Google Scholar
  15. 15.
    J.J. Lee, G.Z. Xing, J.B. Yi, T. Chen, M. Ionescu, S. Li, Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping. Appl. Phys. Lett. 104, 012405 (2014) (1–5)CrossRefGoogle Scholar
  16. 16.
    M. Gao, C. Yan, B.Z. Li, L.J. Zhou, J.C. Yao, Y.J. Zhang, H.L. Liu, L.H. Cao, Y.T. Cao, J.H. Yang, Y.X. Wang, Strong red emission and catalytic properties of ZnO by adding Eu2O3 shell. J. Alloy. Compd. 724C, 537–542 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Shakir, M. Faraz, M.A. Sherwani, S.I. Al-Resayes, Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin. 76, 159–167 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, H.N. Luitel, Bright red upconversion luminescence from Er3+ and Yb3+ co-doped ZnO-TiO2 composite phosphor powder. Ceram. Int. 43(16), 13505–13515 (2017)CrossRefGoogle Scholar
  19. 19.
    J.H. Lang, J.Y. Wang, Q. Zhang, S.S. Xu, D.L. Han, J.H. Yang, Q. Han, L.L. Yang, Y.R. Sui, X.Y. Li, X.Y. Liu, Synthesis and photoluminescence characterizations of the Er3+-doped ZnO nanosheets with irregular porous microstructure. Mat. Sci. Semicon. Proc. 41, 32–37 (2016)CrossRefGoogle Scholar
  20. 20.
    T.J. Castro, A.F. Jr., H.V.S. Pessoni, S.W. da Silva, Investigation of additional Raman modes in ZnO and Eu0.01Zn0.99O nanoparticles synthesized by the solution combustion method. J. Alloy. Compd. 691, 416–421 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Suzuki, K. Murayama, N. Tanaka, Enhanced luminescence in Eu-doped ZnO nanocrystalline films. Appl. Phys. Lett. 107(3), 031902 (2015) (1–4)CrossRefGoogle Scholar
  22. 22.
    C.L. Heng, W. Xiang, W.Y. Su, H.C. Wu, Y.K. Gao, P.G. Yin, T.G. Finstad, Strong near band edge emission of (Ce, Yb) co-doped ZnO thin films after high temperature annealing. Opt. Mater. Express 7(8), 3041–3050 (2017)CrossRefGoogle Scholar
  23. 23.
    L.Y. Xiao, R. Wang, Z.S. Sun, Y.J. Chen, E.M. Zhao, L. Liu, Enhanced red upconversion emission of Er3+-doped ZnO by post-annealing. J. Lumin. 192, 668–674 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Saifa, H. Hafez, A.I. Nabeel, Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials. Chemosphere 90, 840–847 (2013)CrossRefGoogle Scholar
  25. 25.
    U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)—doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8, 17582–17594 (2018)CrossRefGoogle Scholar
  26. 26.
    M.A. Mahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, J.M. Nel, Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition. Mat. Sci. Semicon. Proc. 79, 53–60 (2018)Google Scholar
  27. 27.
    C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 623, 248–254 (2015)CrossRefGoogle Scholar
  28. 28.
    W.X. Huo, Z.X. Mei, A.H. Tang, H.L. Liang, X.L. Du, Suppression of Na interstitials in Na-F codoped ZnO. J. Appl. Phys. 123, 161403 (2018) (1–6)CrossRefGoogle Scholar
  29. 29.
    R.N. Ali, H. Naz, J. Li, X.Q. Zhu, P. Liu, B. Xiang, Band gap engineering of transition metal (Ni/Co) codoped in zincoxide (ZnO) nanoparticles. J. Alloys Compd. 744, 90–95 (2018)CrossRefGoogle Scholar
  30. 30.
    D.M. Chen, Z.H. Wang, T.Z. Ren, H. Ding, W.Q. Yao, R.L. Zong, Y.F. Zhu, Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 118(28), 15300–15307 (2014)CrossRefGoogle Scholar
  31. 31.
    L.L. Yang, J.H. Yang, D.D. Wang, Y.J. Zhang, Y.X. Wang, H.L. Liu, H.G. Fan, J. H. Lang, Photoluminescence and Raman analysis of ZnO nanowires deposited on Si (100) via vapor-liquid-solid process. Phys. E 40, 920–923 (2008)CrossRefGoogle Scholar
  32. 32.
    R.C. Pawar, D.H. Choi, J.S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015)CrossRefGoogle Scholar
  33. 33.
    J.H. Lang, Q. Zhang, Q. Han, Y. Fang, J.Y. Wang, X.Y. Li, Y.Q. Liu, D.D. Wang, J.H. Yang, The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route. Mater. Chem. Phys. 194, 29–36 (2017)CrossRefGoogle Scholar
  34. 34.
    G.S. Thool, M. Arunakumari, A.K. Singh, S.P. Singh, Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures: a morphological evaluation. Bull. Mater. Sci. 38, 1519–1525 (2015)CrossRefGoogle Scholar
  35. 35.
    A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity. J. Alloys Compd. 710, 102–113 (2017)CrossRefGoogle Scholar
  36. 36.
    U. Alama, A. Khana, W. Razaa, A. Khanb, D. Bahnemann, M. Muneera, Highly efficient Y and V co-doped ZnO photocatalyst with enhanceddye sensitized visible light photocatalytic activity. Catal. Today 284, 169–178 (2017)CrossRefGoogle Scholar
  37. 37.
    Y.P. Du, Y.W. Zhang, L.D. Sun, C.H. Yan, Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents. J. Phys. Chem. C 112, 12234–12241 (2008)CrossRefGoogle Scholar
  38. 38.
    J.J. Jiang, K. Zhang, X.D. Chen, F. Zhao, T.F. Xie, D.J. Wang, Y.H. Lin, Porous Ce-doped ZnO hollow sphere with enhanced photodegradation activity for artificial waste water. J. Alloys Compd. 699, 907–913 (2017)CrossRefGoogle Scholar
  39. 39.
    G.L. Kabongo, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, P.S. Mbule, M. S. Dhlamini, Structural, photoluminescence and XPS properties of Tm3+ ions in ZnO nanostructures. J. Lumin. 187, 141–153 (2017)CrossRefGoogle Scholar
  40. 40.
    B. Ghosh, S.C. Ray, M. Pontsho, S. Sarma, K. Dilip, Y.F. Mishra, W.F. Wang, Pong, A.M. Strydom, Defect induced room temperature ferromagnetism in single crystal, poly-crystal, and nanorod ZnO: a comparative study. J. Appl. Phys. 123, 161507 (2018) (1–9)CrossRefGoogle Scholar
  41. 41.
    S. Vinod Kumar, V. Som, V. Kumar, O.M. Kumar, E. Ntwaeaborwa, H.C. Coetsee, Swart, Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications. Chem. Eng. J. 255, 541–552 (2014)CrossRefGoogle Scholar
  42. 42.
    O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 182, 42–49 (2017)CrossRefGoogle Scholar
  43. 43.
    G.Z. Xing, D.D. Wang, B. Yao, A.Q. Lloy Foong Nien, Y.S. Yan, Structural characteristics, low threshold ultraviolet lasing and ultrafast carrier dynamics in high crystalline ZnO nanowire arrays. Chem. Phys. Lett. 515(1–3), 132–136 (2011)CrossRefGoogle Scholar
  44. 44.
    B. Panigrahy, M. Aslam, D. Bahadur, Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology 23, 115601–115607 (2012)CrossRefGoogle Scholar
  45. 45.
    C. Xu, L.X. Cao, G. Su, W. Liu, X.F. Qu, Y.Q. Yu, Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 497, 373–376 (2010)CrossRefGoogle Scholar
  46. 46.
    S. Liu, C. Li, J. Yu, Q. Xiang, Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13(7), 2533–2541 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Mesaros, D. Toloman, M. Nasui, R.B. Mos, T. Petrisor, B.S. Vasile, V.A. Surdu, I. Perhaita, A. Biris, O. Pana, A valence states approach for luminescence enhancement by low dopant concentration in Eu-doped ZnO nanoparticles. J. Mater. Sci. 50, 6075–6086 (2015)CrossRefGoogle Scholar
  48. 48.
    J.H. Lang, Q. Han, X. Li, S.S. Xu, J.H. Yang, L.L. Yang, Y.S. Yan, X.Y. Li, Y.R. Sui, X.Y. Liu, J. Cao, J. Wang, Effect of annealing temperature on the energy transfer in Eu-doped ZnO nanoparticles by chemical precipitation method. J. Mater. Sci.: Mater. Electron. 24, 4542–4548 (2013)Google Scholar
  49. 49.
    G.L. Bhagyalekshmi, A.P. Neethu Sha, D.N. Rajendran, Temperature- independent photoluminescence response in ZnO:Ce nanophosphor. Bull. Mater. Sci. 40(7), 1429–1434 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Chemical synthesis of ZnO hexagonal thin nanodisks and dye-sensitized solar cell performance. Phys. Status Solidi RRL 6(3), 120–122 (2012)CrossRefGoogle Scholar
  51. 51.
    M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Functional properties of amine-passivated ZnO nanostructures and dye-sensitized solar cell characteristics. Chem. Eng. J. 213, 70–77 (2012)CrossRefGoogle Scholar
  52. 52.
    A. Kovalenko, G. Pourroy, O. Crégut, M. Gallart, B. Hönerlage, P. Gilliot, Evidence of unintentional n-doping in ZnO nanorods. J. Phys. Chem. C 114, 9498–9502 (2010)CrossRefGoogle Scholar
  53. 53.
    G.Z. Xing, Y.H. Lu, Y.F. Tian, J.B. Yi, C.C. Lim, Y.F. Li, G.P. Li, D.D. Wang, B. Yao, J. Ding, Y.P. Feng, T. Wu, Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example. AIP Adv. 1, 022152 (2011) (1–14)CrossRefGoogle Scholar
  54. 54.
    M. Alaoui Lamrania, M. Addou, Z. Sofiani, B. Sahraoui, J. Ebothé, A. El Hichou, N. Fellahi, J.C. Bernède, R. Dounia, Cathodoluminescent and nonlinear optical properties of undoped and erbium doped nanostructured ZnO films deposited by spray pyrolysis. Opt. Commun. 277, 196–201 (2007)CrossRefGoogle Scholar
  55. 55.
    J.H. Yang, R. Wang, L.L. Yang, J.H. Lang, M.B. Wei, M. Gao, X.Y. Liu, J. Cao, X. Li, N.N. Yang, Tunable deep-level emission in ZnO nanoparticles via yttrium doping. J. Alloy. Compd. 509, 3606–3612 (2011)CrossRefGoogle Scholar
  56. 56.
    D.D. Wang, G.Z. Xing, J.H. Yang, L.L. Yang, M. Gao, J. Cao, Y.J. Zhang, B. Yao, Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers. J. Alloy. Compd. 504, 22–26 (2010)CrossRefGoogle Scholar
  57. 57.
    J.H. Yang, X. Li, J.H. Lang, L.L. Yang, M. Gao, X.Y. Liu, M.B. Wei, Y. Liu, R. Wang, Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials. J. Alloy. Compd. 509, 10025–10031 (2011)CrossRefGoogle Scholar
  58. 58.
    D.D. Wang, G.Z. Xing, M. Gao, L.L. Yang, J.H. Yang, T. Wu, Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays. J. Phys. Chem. C 115, 22729–22735 (2011)CrossRefGoogle Scholar
  59. 59.
    J.H. Lang, Y. Fang, Q. Zhang, J.Y. Wang, T.S. Li, X.Y. Li, Q. Han, D.D. Wang, M.B. Wei, J.H. Yang, Synthesis, characterization and photoluminescence property of La-doped ZnO nanoparticles. Appl. Phys. A 122, 873 (2016) (1–7)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingPeople’s Republic of China

Personalised recommendations