Advertisement

Microstructure and crystallization kinetics of Ge2Sb2Te5–Sn phase change materials

  • Qixun Yin
  • Leng Chen
Article

Abstract

In this paper, the effects of Sn doping on the microstructure and electrical properties of amorphous and crystalline Ge2Sb2Te5 thin films are reported. The thin films bonding states are measured through X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy, which prove that the bonding states of Ge2Sb2Te5–Sn thin films regularly change with the additions of various Sn contents. Sn atoms alter the chemical surrounding of Te atoms significantly, having a low impact on the bonding environment of Sb atoms, since the additional Sn atoms bond with Te atoms and lead to the SnTe phase formation. Both the homogeneity of bonding characteristics and crystallinity in Ge2Sb2Te5–Sn thin films are improved. The atomic arrangement of the crystalline states Ge2Sb2Te5–Sn thin films is also obtained. It could be inferred that the Sn addition lead to higher crystalline interplanar spacing and arrangement of many disordered atoms. Furthermore, the corresponding activation energy value (EA) of Ge2Sb2Te5–Sn thin films is calculated. This display that the EA values of Ge2Sb2Te5–Sn increase compared to the pure Ge2Sb2Te5 thin films, since the Ge2Sb2Te5–Sn thin film structures are stabilized due to the compressed bonds and various bonding states.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51771023).

References

  1. 1.
    M. Wuttig, N. Yamada, Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7, 972–977 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Cassinerio, N. Ciocchini, D. Ielmini, Adv. Mater. 25, 5975–5980 (2013)CrossRefGoogle Scholar
  4. 4.
    J.Y. Cho, D. Kim, Y.J. Park, T.Y. Yang, Y.Y. Lee, Y.C. Joo, Acta Mater. 94, 143–151 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Raoux, W. Wełnic, D. Ielmini, Chem. Rev. 110, 240–267 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Vora-Ud, M. Rittiruam, M. Kumar., J.G. Han, T. Seetawan, Mater. Des. 89, 957–963 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Lombardo, E. Rimini, M.G. Grimaldi, S. Priviterac, Microelectron. Eng. 87, 294–300 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Nukala, C.C. Lin, R. Composto, R. Agarwal, Nat. Commun. 7, 10482 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Raoux, W. Welnic, D. Ielmini, Chem. Rev. 110, 240–267 (2010)CrossRefGoogle Scholar
  10. 10.
    H.W. Ho, K. Bai, W.D. Song, T.L. Tan, R. Zhao, C.M. Ng, L. Wang, Acta Mater. 61, 1757–1763 (2013)CrossRefGoogle Scholar
  11. 11.
    A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703–708 (2004)CrossRefGoogle Scholar
  12. 12.
    K.S. Bang, S.Y. Lee, J. Nanosci. Nanotechnol. 16, 10917–10922 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Koch, T. Dankwort, A.L. Hansen, M. Esters, D. Häußler, H. Volker, A. Hoegen, M. Wuttig, D.C. Johnson, W. Bensch, L. Kienle, Acta Mater. 152, 278–287 (2018)CrossRefGoogle Scholar
  14. 14.
    Z. Li, C. Si, J. Zhou, H. Xu, Z. Sun, ACS Appl. Mater. Interface 8, 26126–26134 (2016)CrossRefGoogle Scholar
  15. 15.
    B.G. Chae, J.B. Seol, J.H. Song, W.Y. Jung, H. Hwang, C.G. Park, Appl. Phys. Lett. 109, 112103 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Kojima, N. Yamada, Jpn. J. Appl. Phys. 40, 5930–5937 (2001)CrossRefGoogle Scholar
  17. 17.
    J. Singh, G. Singh, A. Kaura, S.K. Tripathi, J. Electron. Mater. 45, 2950–2956 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Akiyama, M. Uno, H. Kitaura, K. Narumi, R. Kojima, K. Nishiuchi, N. Yamada, Jpn. J. Appl. Phys. 40, 1598–1603 (2001)CrossRefGoogle Scholar
  19. 19.
    V.I. Shtanov, O.V. Zatolochnaya, K.Y. Veremeev, M.E. Tamm, O.E. Timofeeva, J. Alloys Compd. 476, 812–816 (2009)CrossRefGoogle Scholar
  20. 20.
    J.B. Williams, S. Mather, D.T. Morelli, J. Electron. Mater. 45, 1077–1084 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Kumar, R. Thangaraj, T.S. Sathiaraj, J. Optoelectron. Adv. Mater. 14, 455–459 (2012)Google Scholar
  22. 22.
    V. Bragaglia, K. Holldack, J.E. Boschker, F. Arciprete, E. Zallo, T. Flissikowski, R. Calarco, Sci. Rep. 6, 28560 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Němec, V. Nazabal, A. Moréac, J. Gutwirth, L. Bene, M. Frumar, Mater. Chem. Phys. 136, 935–941 (2012)CrossRefGoogle Scholar
  24. 24.
    J.H. Han, K.S. Jeong, M. Ahn, D.H. Lim, W.J. .Yang, S.J. Park, M.H. Cho, J. Mater. Chem. C 5, 3973–3982 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Sahu, A. Manivannan, H. Shaik, G. Mohan Rao, J. Appl. Phys. 122, 015305 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Kozyukhin, M. Veres, H.P. Nguyen, A. Ingram, V. Kudoyarova, Phys. Proced. 44, 82–90 (2013)CrossRefGoogle Scholar
  27. 27.
    N. Bai, F.R. Liu, X.X. Han, Z. Zhu, F. Liu, X. Lin, Appl. Surf. Sci. 316, 202–206 (2014)CrossRefGoogle Scholar
  28. 28.
    S.J. Park, M.H. Jang, M.H. Cho, D.H. Ko, Appl. Surf. Sci. 258, 9786–9791 (2012)CrossRefGoogle Scholar
  29. 29.
    R. De Bastiani, A.M. Piro, M.G. Grimaldi, E. Rimini, G.A. Baratta, G. Strazzulla, Appl. Phys. Lett. 92, 241925 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Sandhu, D. Singh, S. Kumar, R. Thangaraj, J. Ovonic Res. 10, 397–412 (2014)Google Scholar
  31. 31.
    G. Singh, A. Kaura, M. Mukul, S.K. Tripathi, J. Mater. Sci. 48, 299–303 (2013)CrossRefGoogle Scholar
  32. 32.
    M.L. Lee, K.T. Yong, C.L. Gan, H.T. Lee, S.B.M. Daud, L.P. Shi, J. Phys. D 41, 215402 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Sahu, S.K. Pandey, A. Manivannan, U.P. Deshpande, V.G. Sathe, V.R. Reddy, M. Sevi, Phys. Status Solidi (b) 253, 1069–1075 (2016)CrossRefGoogle Scholar
  34. 34.
    R. Golovchak, Y.G. Choi, S. Kozyukhin, Y. Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek, H. Jain, Appl. Surf. Sci. 332, 533–541 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Zhu, F.R. Liu, Z.M. Wang, Z.K. Fan, F. Liu, N.X. Sun, Appl. Surf. Sci. 335, 184–188 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Caravati, M. Bernasconi, T.D. Kühne, M. Krack, M. Parrinello, J. Phys.: Condens. Matter 21, 255501 (2009)Google Scholar
  37. 37.
    X.Q. Liu, X.B. Li, L. Zhang, Y.Q. Cheng, Z.G. Yan, M. Xu, X.D. Han, S.B. Zhang, Z. Zhang, E. Ma, Phys. Rev. Lett. 106, 025501 (2011)CrossRefGoogle Scholar
  38. 38.
    I. Hilmi, A. Lotnyk, J.W. Gerlach, P. Schumacher, B. Rauschenbach, Mater. Des. 115, 138–146 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Shamoto, N. Yamada, T. Matsunaga, T. Proffen, J.W. Richardson Jr., J.H. Chung, T. Egami, Appl. Phys. Lett. 86, 081904 (2005)CrossRefGoogle Scholar
  40. 40.
    T. Chong, H. Koon, Jpn. J. Appl. Phys. 46, 2211–2214 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Tominaga, T. Shima, P. Fons, R. Simpson, M. Kuwahara, A. Kolobov, Jpn. J. Appl. Phys. 48, 03A053 (2009)CrossRefGoogle Scholar
  42. 42.
    I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130–4134 (2000)CrossRefGoogle Scholar
  43. 43.
    S. Kozyukhin, V. Kudoyarova, H.P. Nguyen, A. Smirnov, V. Lebedev, Phys. Status Solidi (c) 8, 2688–2691 (2011)CrossRefGoogle Scholar
  44. 44.
    A.V. Kolobov, M. Krbal, P. Fons, J. Tominaga, T. Uruga, Nat. Chem. 3, 311–316 (2011)CrossRefGoogle Scholar
  45. 45.
    X. Zhou, J. Kalikka, X. Ji, L. Wu, Z. Song, R.E. Simpson, Adv. Mater. 28, 3007–3016 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations