Intense infrared, visible up and down emissions in Er3+/Yb3+ co-doped SrAl12O19 obtained by urea assisted combustion route

  • Vijay SinghEmail author
  • M. Seshadri
  • M. Radha
  • N. Singh
  • Sooraj H. Nandyala


SrAl12O19 phosphors containing the Yb3+ and the Er3+ were prepared using the urea-assisted combustion process. The formation of the combustion products was confirmed by the XRD analysis, indicating the formation of the hexagonal phase. The Er3+ emission at 1.5 µm and the IR-to-visible up-conversion emission upon the 980-nm excitation were evaluated as a function of the excitation power. The stronger green-emission band (4S3/2 → 4I15/2) at 546 nm became evident. The intensity of the visible, up, and down emission bands were significantly enhanced in the Er3+/Yb3+:SrAl12O19 phosphor due to the energy transfer from the Yb3+ ions to the Er3+ ions. The results indicate the potential of Er3+ and Er3+/Yb3+:SrAl12O19 phosphors for applications in optoelectronic devices.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030003).


  1. 1.
    J. McKittrick, L.E. Shea-Rohwer, Down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97, 1327–1352 (2014)CrossRefGoogle Scholar
  2. 2.
    Y.H. Kim, N.S.M. Viswanath, S. Unithrattil, H.J. Kim, W.B. Im, Review-phosphor plates for high-power led applications: challenges and opportunities toward perfect lighting. ECS J. Solid State Sci. Technol. 7, R3134–R3147 (2018)CrossRefGoogle Scholar
  3. 3.
    S.M. Hwang, J.B. Lee, S.H. Kim, J.H. Ryu, A review on inorganic phosphor materials for white LEDs. J. Korean Cryst. Growth Cryst. Technol. 22, 233–240 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Silver, P.J. Marsh, G.R. Fern, T.G. Ireland, A. Salimian, ZnCdS:Cu,Al,Cl: a near infra-red emissive family of phosphors, for marking, coding, and identification. ECS J. Solid State Sci. Technol. 7, R3057–R3063 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Liao, D. Zhou, S. Liu, H.-R. Wen, X. Qiu, J. Chen, Efficient near-infrared emission in Eu3+-Yb3+-Y3+ tri-doped cubic ZrO2 via down-conversion for silicon solar cells. Physica B 436, 59–63 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Balakrishna, H.C. Swart, R.E. Kroon, O.M. Ntwaeaborwa, Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors. Physica B 535, 29–34 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Chin, H.-J. Kim, Near-infrared fluorescent probes for peptidases. Coord. Chem. Rev. 354, 169–181 (2018)CrossRefGoogle Scholar
  8. 8.
    Q. Sheng, X. Wang, D. Chen, Near-infrared emission from Pr-doped borophosphate glass for broadband telecommunication. J. Lumin. 135, 38–41 (2013)CrossRefGoogle Scholar
  9. 9.
    C.R. Kesavulu, V.B. Sreedhar, C.K. Jayasankar, K. Jang, D.-S. Shin, S.S. Yi, Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application. Mater. Res. Bull. 51, 336–344 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Zhao, L. Qiu, K. Zhao, K. Li, Y. Sun, L. Meng, Z. Huang, T. Li, Effect of 805 nm on reliability of 735/805/850-nm LED involved near-infrared spectroscopy biomedical device. Microelectron. Reliab. 78, 406–410 (2017)CrossRefGoogle Scholar
  11. 11.
    A.P. Popov, A.V. Karmenyan, A.V. Bykov, E.V. Khaydukov, A.V. Nechaev, O.A. Bibikova, V.Y. Panchenko, V.A. Semchishen, A.S. Akhmanov, V.I. Sokolov, M.T. Kinnunen, V.V. Tuchin, A.V. Zvyagin, High-resolution deep-tissue optical imaging using anti-stokes phosphors, Proc. of OSA-SPIE, 8801 (2013), 88010C-1-88010C-8Google Scholar
  12. 12.
    D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors. Displays 19, 197–203 (1999)CrossRefGoogle Scholar
  13. 13.
    Z. Wu, Z. Xia, Phosphors for White LEDs, Nitride Semiconductor Light-Emitting Diodes (LEDs), 2nd edn. (Woodhead Publishing, Cambridge, 2018), pp. 123–208CrossRefGoogle Scholar
  14. 14.
    L.-T. Chen, C.-S. Hwang, I.-L. Sun, I.-G. Chen, Luminescence and chromaticity of alkaline earth aluminate MxSr1−xAl2O4:Eu2+ (M: Ca,Ba). J. Lumin. 118, 12–20 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Wang, W. Nei, P. Xie, Properties and synthesis of morphology-controllable CaAl12O19:Mn4+ by combustion synthesis. Procedia Eng. 27, 698–704 (2012)CrossRefGoogle Scholar
  16. 16.
    A.L.N. Stevels, A.D.M. Schrama-de, Pauw, Effects of defects on the quantum efficiency of Eu2+-doped aluminates with the magnetoplumbite-type crystal structure. J. Lumin. 14, 147–152 (1976)Google Scholar
  17. 17.
    X. Luo, X. Yang, S. Xiao, Conversion of broadband UV-visible to near infrared emission by LaMgAl11O19: Cr3+, Yb3+ phosphors. Mater. Res. Bull. 101, 73–82 (2018)CrossRefGoogle Scholar
  18. 18.
    S.H. Park, D.C. Lee, J. Heo, H.S. Kim, Pr3+/Er3+ codoped Ge-As-Ga-S glasses as dual-wavelength fiber-optic amplifiers for 1.31 and 1.55 µm windows. J. Am. Ceram. Soc. 83, 1284–1286 (2000)CrossRefGoogle Scholar
  19. 19.
    I. Soltani, S. Hraiech, K. Horchani-Naifer, M. Férid, Effects of silver nanoparticles on the enhancement of up conversion and infrared emission in Er3+/Yb3+ co-doped phosphate glasses. Opt. Mater. 77, 161–169 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Zhou, Y. Zhang, Z. Wu, B. Chen, Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+ phosphor. J. Rare Earths 33, 686–692 (2015)CrossRefGoogle Scholar
  21. 21.
    R.V. Perrella, M.A. Schiavon, E. Pecoraro, S.J.L. Ribeiro, J.L. Ferrari, Broadened band C-telecom and intense upconversion emission of Er3+/Yb3+ co-doped CaYAlO4 luminescent material obtained by an easy route. J. Lumin. 178, 226–233 (2016)CrossRefGoogle Scholar
  22. 22.
    D.L. Veasey, D.S. Funk, N.A. Sanford, J.S. Hayden, Arrays of distributed-Bragg-reflector waveguide lasers at 1536 nm in Yb/Er codoped phosphate glass. Appl. Phys. Lett. 74, 789–791 (1999)CrossRefGoogle Scholar
  23. 23.
    J.E. Roman, P. Camy, M. Hempstead, W.S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, J.S. Wilkinson, Ion-exchanged Er/Yb waveguide laser at 1.5 /spl mu/m pumped by laser diode. Electron. Lett. 31, 1345–1346 (1995)CrossRefGoogle Scholar
  24. 24.
    P. Cardile, M. Miritello, F. Ruffino, F. Priolo, Structural and optical properties of highly Er-doped Yb-Y disilicate thin films. Opt. Mater. Exp. 3, 11–20 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Auzel, Upconversion and anti-stokes processes with f and d Ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Pal, A. Dhar, S. Das, S.Y. Chen, T. Sun, R. Sen, K.T.V. Grattan, Ytterbium-sensitized thulium-doped fiber laser in the near-IR with 980 nm pumping. Opt. Exp. 18, 5068–5074 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nik, H. Sato, Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature. Opt. Exp. 17, 18312–18319 (2009)CrossRefGoogle Scholar
  28. 28.
    F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)CrossRefGoogle Scholar
  29. 29.
    R.K. Verma, A. Rai, K. Kumar, S.B. Rai, Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M = Ca, Sr and Ba) phosphors. J. Lumin. 130, 1248–1253 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Puchalska, M. Sobczyk, J. Targowska, A. Watras, E. Zych, Infrared and cooperative luminescence in Yb3+ doped calcium aluminate CaAl4O7. J. Lumin. 143, 503–509 (2013)CrossRefGoogle Scholar
  31. 31.
    R.K. Verma, S.B. Rai, Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe. J. Quant. Spectrosc. Radiat. Transfer 113, 1594–1600 (2012)CrossRefGoogle Scholar
  32. 32.
    R.K. Verma, G. Kaur, A. Rai, S.B. Rai, Dual mode green fluorescence from Tb3+:Ca12Al14O33 and its applicability as delayed fluorescence. Mater. Res. Bull. 47, 3726–3731 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Xiao, Y. Gao, J. Zhang, Y. Liu, Q. Yang, Influence of urea on microstructure and optical properties of YPO4:Eu3+ phosphors. J. Rare Earths 30, 515–519 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Cara, E. Rombi, A. Musinu, V. Mameli, A. Ardu, M. Sanna Angotzi, L. Atzori, D. Niznansky, H.L. Xin, C. Cannas, MCM-41 support for ultra small γ-Fe2O3 nanoparticles for H2S removal. J. Mater. Chem. A 5, 21688–21698 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Raghava Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater. 58, 1010–1013 (2008)CrossRefGoogle Scholar
  36. 36.
    Y.P. Zhang, S.H. Lee, K.R. Reddy, A.I. Gopalan, K.P. Lee, Synthesis and characterization of core shell SiO2 nanoparticles/poly (3 aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)CrossRefGoogle Scholar
  37. 37.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Md Showkat, Y.P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.P. Lee, Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bull. Korean Chem. Soc. 28, 1985–1992 (2007)CrossRefGoogle Scholar
  39. 39.
    K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A 489, 1–16 (2015)CrossRefGoogle Scholar
  40. 40.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A. Md Showkat, Y. Chang, Nho, Synthesis of metal (Fe or Pd)/alloy (Fe-Pd) nanoparticles embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. A 44, 3355–3364 (2006)CrossRefGoogle Scholar
  41. 41.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, A. Donald Tryk, A. Fujishima, Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J. Nanosci. Nanotechnol. 11, 3692–3695 (2011)CrossRefGoogle Scholar
  42. 42.
    Y.R. Lee, S.C. Kim, H. Lee, H.M. Jeong, A.V. Raghu, K.R. Reddy, B.K. Kim, Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011)CrossRefGoogle Scholar
  43. 43.
    K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  44. 44.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf. A 320, 49–56 (2008)CrossRefGoogle Scholar
  45. 45.
    S.R. Jain, K.C. Adiga, V.R. Pal Verneker, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71–79 (1981)CrossRefGoogle Scholar
  46. 46.
    B. Zandi, L.D. Merkle, J.B. Gruber, D.E. Wortman, C.A. Morrison, Optical spectra and analysis for Pr3+ in SrAl12O19. J. Appl. Phys. 81, 1047–1054 (1997)CrossRefGoogle Scholar
  47. 47.
    V. Singh, M. Seshadri, N. Singh, P.K. Singh, M.K. Tiwari, M. Irfan, Investigation of near-infrared luminescence in Er3+ and Er3+/Yb3+ co-doped ZnMgAl10O17 phosphors. Optik 158, 1283–1288 (2018)CrossRefGoogle Scholar
  48. 48.
    F. Yuan, W. Zhao, S. Sun, L. Zhang, Y. Huang, Z. Lin, G. Wang, Polarized spectroscopic properties of Er3+:Ca9Y(VO4)7 crystal. J. Lumin. 154, 241–245 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Pokhrel, G.A. Kumar, P. Samuel, K.I. Ueda, T. Yanagitani, H. Yagi, D.K. Sardar, Infrared and upconversion spectroscopic studies of high Er3+ content transparent YAG ceramic. Opt. Mater. Exp. 1, 1272–1285 (2011)CrossRefGoogle Scholar
  50. 50.
    Y. Wang, Y. Zhenyu, L. Jianfu, Z. Zhaojie, M. En, T. Chaoyang, Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals. J. Phys. D 42, 215406–215408 (2009)CrossRefGoogle Scholar
  51. 51.
    V. Singh, V.K. Rai, V. Venkatramu, R.P.S. Chakradhar, S.H. Kim, Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route. J. Lumin. 134, 396–400 (2013)CrossRefGoogle Scholar
  52. 52.
    S.H. Nandyala (ed.), Current Trends on Lanthanide Glasses and Materials, vol. 8 (Materials Research Foundations, Millersville, PA, 2017)Google Scholar
  53. 53.
    L. Mei, J. Xie, L. Liao, M. Guan, H. Liu, Tunable upconversion luminescence and energy transfer process in BaLa2ZnO5:Er3+/Yb3+ phosphors. Adv. Mater. Sci. Eng. 2015, 380936-5 (2015)Google Scholar
  54. 54.
    H. Du, Y. Lan, Z. Xia, J. Sun, Synthesis and upconversion luminescence properties of Yb3+/Er3+ codoped BaGd2(MoO4)4 powder. Mater. Res. Bull. 44, 1660–1662 (2009)CrossRefGoogle Scholar
  55. 55.
    M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337–3346 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vijay Singh
    • 1
    Email author
  • M. Seshadri
    • 2
  • M. Radha
    • 2
  • N. Singh
    • 1
  • Sooraj H. Nandyala
    • 3
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK

Personalised recommendations