Advertisement

Hierarchical porous nitrogen-doped carbon material for high performance sodium ion batteries

  • Junke Ou
  • Lin Yang
  • Zhen Zhang
Article
  • 54 Downloads

Abstract

Hierarchical porous carbon materials (HPCMs) with appropriate nitrogen doping have been successfully fabricated from the gelatin by KOH activation. The HPCMs contain porous structure with suitable nitrogen content (2.85%), which specific surface area reach up to 1006 m2 g−1. When applied as anode materials for sodium ion batteries, the HPCMs deliver superior electrochemical performances, including a favorable reversible capacity of 261 mAh g−1 at the current density of 100 mA g−1, excellent rate performance (104 mAh g−1 at 5 A g−1), and superior cycling capability (220 mAh g−1 at 100 mA g−1 after 100 cycles).

Notes

Acknowledgements

We greatly appreciate the National Natural Science Foundation of China (No. 21606024) and Chengdu University new faculty start-up funding (No. 208191503) for supporting this work.

References

  1. 1.
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Ge, Z. Li, L. Yin, Metal-organic frameworks derived porous core/shellCoP@ C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017)CrossRefGoogle Scholar
  3. 3.
    A.R. Radwan, Y. Liu, V. Nguyen et al., Sodium vanadate nanoflowers/rGO composite as a high-rate cathode material for sodium-ion batteries. J. Mater. Sci.: Mater. Electron. 29, 7032–7039 (2018)Google Scholar
  4. 4.
    Z. Jian, L. Zhao, H. Pan, Y.S. Hu, H. Li, W. Chen, L. Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012)CrossRefGoogle Scholar
  5. 5.
    O.H. Han, J.K. Jung, M.Y. Yi, J.H. Kwak, Y.J. Shin, Sodium ion dynamics in the nonstoichiometric layer-type oxide Na0.67Ni0.33Ti0.67O2 studied by 23 Na NMR. Solid State Commun. 117, 65–68 (2000)CrossRefGoogle Scholar
  6. 6.
    Y. Zhao, X. Cao, G. Fang, Y. Wang, H. Yang, S. Liang, A.Q. Pan, G.Z. Cao, Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem. Eng. J. 339, 162–169 (2018)CrossRefGoogle Scholar
  7. 7.
    X.Q. Yang, C. Wei, C.C. Sun, X.X. Li, Y. Chen, High performance anode of lithium-ion batteries derived from an advanced carbonaceous porous network. J. Alloy Compd. 693, 777–781 (2017)CrossRefGoogle Scholar
  8. 8.
    F.C. Zheng, D. Liu, G.L. Xia, Y. Yang, T. Liu, M.Z. Wu, Q.W. Chen, Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries. J. Alloy Compd. 693, 1197–1204 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Zhou, Y. Liu, W.L. Song, X.G. Li, L.Z. Fan, Y.H. Deng, Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chem. Eng. J. 316, 645–654 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8, 1702434 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Ou, L. Yang, Z. Zhang, X. Xi, Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Microporous Mesoporous Mater. 237, 23–30 (2017)CrossRefGoogle Scholar
  12. 12.
    K.L. Hong, L. Qie, R. Zeng, Z.Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.J. Fan, W.X. Zhang, Y.H. Huang, Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Yue, N. Huang, Z. Jiang, X. Tian, Z. Wang, X. Hao, Z. Jiang, Nitrogen-rich graphene hollow microspheres as anode materials for sodium-ion batteries with super-high cycling and rate performance. Carbon 130, 574–583 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Zeng, B. Zhou, L. Yi, H. Li, X. Hu, Y. Li, Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries. Sustain. Energy Fuels 2, 855–861 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Yang, J. Xiong, X. Ou, C. Wu, X. Xiong, J. Wang, K. Huang, M. Liu, A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater. Today Energy 8, 37–44 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Wang, Y. Xiong, H. Wang, N. Yang, C. Jin, Q. Sun, “Pickles method” inspired tomato derived hierarchical porous carbon for high-performance and safer capacitive output. J. Electrochem. Soc. 165, A1054–A1063 (2018)CrossRefGoogle Scholar
  17. 17.
    Q. Jiang, S. Zhang, S. Yin, Z. Guo, S. Wang, C. Feng, Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl. Surf. Sci. 379, 73–82 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Yu, H. Hou, X. Liu, Y. Yao, Q. Liao, Z. Dai, D. Li, Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int. J. Hydrog. Energy 43, 3253–3260 (2018)CrossRefGoogle Scholar
  19. 19.
    Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, J. Bao, Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127, 658–666 (2018)CrossRefGoogle Scholar
  20. 20.
    C. Wang, J. Huang, H. Qi, L. Cao, Z. Xu, Y. Cheng, X. Zhao, J. Li, Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. J. Power Sources 358, 85–92 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Sun, J. Tang, K. Zhang, J. Yuan, J. Li, D. Zhu, K. Ozawa, L. Qin, Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9, 2585–2595 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Sinan, E. Unur, Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J. Energy Chem. 26, 783–789 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.S. Hu, P. Adelhelm, B.M. Smarsly, S. Hore, M. Antonietti, J. Maier, Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater. 17, 1873–1878 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Zhu, T. Akiyama, Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes. Green Chem. 18, 2106–2114 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z.X. Wang, L.Q. Chen, Y. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 7950–7955 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Xiang, W. Lv, C. Mu, J. Zhao, B. Wang, Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J. Alloy Compd. 701, 870–874 (2017)CrossRefGoogle Scholar
  28. 28.
    N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664–2680 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Wang, Y. Xiong, H. Wang, C. Jin, Q. Sun, Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J. Mater. Chem. A 5, 15759–15770 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Wang, C. Wang, Y. Xiong, C. Jin, Q. Sun, Simple synthesis of N-doped interconnected porous carbon from Chinese tofu for high-performance supercapacitor and lithium-ion battery applications. J. Electrochem. Soc. 164, A3832–A3839 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Wang, C. Sheng, T. Cai, C. Jin, Q. Sun, Mesopore-dominant nitrogen-doped carbon with a large defect degree and high conductivity via inherent hydroxyapatite-induced self-activation for lithium-ion batteries. RSC Adv. 8, 12204–12210 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Lu, W. Yu, J. Shi, W. Liu, S. Chen, X. Wang, H. Wang, Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries. Electrochim. Acta 251, 396–406 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L.V. Saraf, G. Exarhos, J.G. Zhang, J. Liu, Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 13, 3909–3914 (2013)CrossRefGoogle Scholar
  34. 34.
    Y.C. Wang, B.Y. Zhu, J.F. Ni, L. Zhang, H.B. Wang, L.J. Gao, Pyrolyzed polyaniline-graphene nanosheets with enhanced lithium-storage properties: preparation and characterization. ChemElectroChem 1, 951–956 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Machnikowski, B. Grzyb, J.V. Weber, E. Frackowiak, J.N. Rouzaud, F. Béguin, Structural and electrochemical characterisation of nitrogen enriched carbons produced by the co-pyrolysis of coal-tar pitch with polyacrylonitrile. Electrochim. Acta 49, 423–432 (2004)CrossRefGoogle Scholar
  36. 36.
    Z. Guan, H. Liu, B. Xu, X. Hao, Z. Wang, L. Chen, Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. J. Mater. Chem. A 3, 7849–7854 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Li, L. Zhang, H. Chen, L.X. Ding, S. Wang, H. Wang, Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem. Commun. 51, 16045–16048 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang, L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017)CrossRefGoogle Scholar
  39. 39.
    L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6, 1384–1389 (2014)CrossRefGoogle Scholar
  40. 40.
    Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013)CrossRefGoogle Scholar
  41. 41.
    H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang, L.M. Wang, X.B. Zhang, Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6, 56–60 (2013)CrossRefGoogle Scholar
  42. 42.
    F. Zhang, T. Liu, G. Hou, T. Kou, L. Yue, R. Guan, Y. Li, Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875–2888 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017)CrossRefGoogle Scholar
  44. 44.
    S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011)CrossRefGoogle Scholar
  45. 45.
    K. Tang, L. Fu, R.J. White, L. Yu, M.M. Titirici, M. Antonietti, J. Maier, Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2, 873–877 (2012)CrossRefGoogle Scholar
  46. 46.
    V.G. Pol, E. Lee, D. Zhou, F. Dogan, J.M. Calderon-Moreno, C.S. Johnson, Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim. Acta 127, 61–67 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Liu, H. Liu, T. Yang, G. Wang, M.O. Tade, Mesoporous carbon with large pores as anode for Na-ion batteries. Chin. Sci. Bull. 59, 2186–2190 (2014)CrossRefGoogle Scholar
  48. 48.
    W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. Lee, X. Ji, Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 7, 2626–2631 (2015)CrossRefGoogle Scholar
  49. 49.
    K. Zhang, X. Li, J. Liang, Y. Zhu, L. Hu, Q. Cheng, C. Guo, N. Lin, Y. Qian, Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta 155, 174–182 (2015)CrossRefGoogle Scholar
  50. 50.
    W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen, X. Ji, Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1, 10662–10666 (2013)CrossRefGoogle Scholar
  51. 51.
    Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced StudyChengdu UniversityChengduChina
  2. 2.School of Basic Medical Sciences & NursingChengdu UniversityChengduChina

Personalised recommendations