Highly reproducible perovskite solar cells via controlling the morphologies of the perovskite thin films by the solution-processed two-step method

  • Yaqub Rahaq
  • Magdi Moussa
  • Abubaker Mohammad
  • Heming Wang
  • Aseel HassanEmail author


Organic–inorganic halide perovskites are one of the most attractive materials for the next generation solar cells. The PCE has rapidly increased to more than 22% using different configurations and techniques and further developments are predicted. However, perovskite solar cells suffer from fabrication reproducibility mainly due to difficulty in controlling the morphology of the perovskite films themselves. In this paper we present a low temperature solution-processed two-step deposition method to fabricate CH3NH3PbI3 perovskites. This method offers a simple route with great potential in fabricating reproducible perovskite solar cells. In the present work, we demonstrate that the morphology of the perovskite thin films is highly determined by the concentration of Methylammonium iodide (MAI) as well as the reaction time between MAI and PbI2. High-performance solar cells have been reproducibly achieved with a highest PCE of 15.01% for PCBM-based planar heterojunction solar cells.



The authors would like to acknowledge the facility support by Sheffield Hallam University technical staff and Becker Industrial Coating Ltd.


  1. 1.
    Y. Hou, H. Zhang, W. Chen, S. Chen, C.O.R. Quiroz, H. Azimi, A. Osvet, G.J. Matt, E. Zeira, J. Seuring, N.K. Busies, W. Lövenich, C.J. Brabec, Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction layer. Adv. Energy Mater. 5, 1500543 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508–18514 (2014)CrossRefGoogle Scholar
  3. 3.
    K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lee, Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461–6466 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, C.J. Brabec, Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer. Chem. Mater. 26, 5190–5193 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Xing, N. Mathews, S. Sun, S. Lim, Y. Lam, M. Grätzel, S. Mhaisalkar, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRefGoogle Scholar
  6. 6.
    S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S.G. Mhaisalkar, Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A. 2, 9221–9225 (2014)CrossRefGoogle Scholar
  7. 7.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Tavakoli, D. Bi, L. Pan, A. Hagfeldt, S. Zakeeruddin, M. Grätzel, Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv. Energy Mater. (2018)CrossRefGoogle Scholar
  10. 10.
    S. Karuppuchamy, G. Murugadoss, K. Ramachandran, V. Saxena, R. Thangamuthu, Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci. Mater. Electron. 29(10), 8847–8853 (2018)CrossRefGoogle Scholar
  11. 11.
    K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142–1147 (2014)CrossRefGoogle Scholar
  12. 12.
    J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A.A. Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2013)CrossRefGoogle Scholar
  13. 13.
    P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.J.u. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin, M. Gratzel, Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale 6, 1508–1514 (2014)CrossRefGoogle Scholar
  14. 14.
    J.W. Lee, S.H. Lee, H.S. Ko, J. Kwon, J.H. Park, S.M. Kang, N. Ahn, M. Choi, J.K. Kim, N.G. Park, Opto-electronic properties of TiO2 nanohelices with embedded HC (NH2)2 PbI3 perovskite solar cells. J. Mater. Chem. A 3, 9179–9186 (2015)CrossRefGoogle Scholar
  15. 15.
    N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013)CrossRefGoogle Scholar
  16. 16.
    J.H. Kim, C.C. Chueh, S.T. Williams, A.K.Y. Jen, Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale 7, 17343–17349 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Ryu, J. Seo, S.S. Shin, Y.C. Kim, N.J. Jeon, J.H. Noha, S.I. Seok, Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J. Mater. Chem. A 3, 3271–3275 (2015)CrossRefGoogle Scholar
  18. 18.
    C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2, 15897–15903 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Duan, Q. Xiong, H. Wang, J. Zhang, J. Hu, ZnO nanostructures for efficient perovskite solar cells. J. Mater. Sci. 28, 60 (2017)Google Scholar
  20. 20.
    J. Seo, S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7, 2642–2646 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao, Q. Gong, Morphology control of the perovskite films for efficient solar cells. Dalt Trans. 44, 10582–10593 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Shi, Y. Li, X. Li, H. Wang, Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Mater Horizons 2, 378–405 (2015)CrossRefGoogle Scholar
  23. 23.
    Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao, G. Li, Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3, 963–967 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Hao, C.C. Stoumpos, Z. Liu, R.P. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136, 16411–16419 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Zhao, K. Zhu, Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 5, 4175–4186 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016)CrossRefGoogle Scholar
  29. 29.
    H.L. Hsu, C.P. Chen, J.Y. Chang, Y.Y. Yu, Y.K. Shen, Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale. 6, 10281–10288 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater. 26, 6503–6509 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, T. Chen, L. Dai, Layer-by-layer growth of CH3NH3PbI3−xClx for highly efficient planar heterojunction perovskite solar cells. Adv Mater. 27, 1053–1059 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Qiu, Y. Qiu, K. Yan. M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO 2 nanowire arrays. Nanoscale 5, 3245 (2013)CrossRefGoogle Scholar
  33. 33.
    H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  34. 34.
    G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yaqub Rahaq
    • 1
  • Magdi Moussa
    • 1
  • Abubaker Mohammad
    • 1
  • Heming Wang
    • 1
  • Aseel Hassan
    • 1
    Email author
  1. 1.Materials & Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations