Advertisement

Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device

  • A. A. Yadav
  • Y. M. Hunge
  • S. B. Kulkarni
Article
  • 92 Downloads

Abstract

In present work, Co3O4 nanowire is successfully prepared on stainless steel substrate by simple chemical bath deposition method and studied the supercapacitor application. The prepared Co3O4 nanowire is analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy and Brunauer–Emmett–Teller techniques. Co3O4 nanowire offers high specific surface area of 66.33 m2 g−1 for the intercalation of electrolyte ions. Co3O4 nanowires exhibit outstanding electrochemical performance with a high specific capacitance of 850 F g−1 at scan rate of 5 mV s−1, and excellent long-term cycling stability (86% over 5000 CV cycles). The symmetric solid-state supercapacitor device is fabricated by accumulating two electrodes of Co3O4 nanowire, which shows superior electrochemical performance with specific capacitance of 127 F g−1, specific energy of 24.18 Wh kg−1 and excellent cycling stability (85% over 3000 CV cycles).

Notes

Acknowledgements

Dr. A. A.Yadav is thankful to Science and Engineering Research Board, New Delhi, for the financial support and awarding National Postdoctoral Fellowship (N-PDF) award F. No. PDF/2017/001419. Dr. Y. M. Hunge is thankful to Science and Engineering Research Board, New Delhi, for the financial support and awarding National Postdoctoral Fellowship (N-PDF) award F. No. PDF/2017/000691.

References

  1. 1.
    Z. Wu, Y. Zhu, X. Ji, J. Mater. Chem. A 2, 14759 (2014)CrossRefGoogle Scholar
  2. 2.
    S.C. Pang, M.A. Anderso, T.W. Chapman, J. Electrochem. Soc. 147, 44 (2000)CrossRefGoogle Scholar
  3. 3.
    A.A. Yadav, A.C. Lokhande, R.B. Pujari, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 51, 484 (2016)Google Scholar
  4. 4.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 47, 797 (2012)CrossRefGoogle Scholar
  5. 5.
    Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 9, 5310 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Mitra, A.K. Shukla, S. Sampath, J. Power Sources 101, 213 (2001)CrossRefGoogle Scholar
  7. 7.
    C.Z. Yang, F. Xu, W. Zhang, Z. Mei, B. Pei, X. Zhu, J. Power Sources 24, 246 (2014)Google Scholar
  8. 8.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)CrossRefGoogle Scholar
  9. 9.
    K.W. Nam, J.B. Kim, J. Electrochem. Soc. 149, 346 (2002)CrossRefGoogle Scholar
  10. 10.
    R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nano Lett. 12, 2559 (2012)CrossRefGoogle Scholar
  11. 11.
    L.L. Wang, X. Wang, X. Yang, L. Lu, J. Mater. Sci.: Mater. Electron. 22, 601 (2011)Google Scholar
  12. 12.
    G.X. Wang, X.P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, J. Phys. Chem. C 113, 4357 (2009)CrossRefGoogle Scholar
  13. 13.
    X.H. Xia, J.P. Tu, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, J. Mater. Chem. 21, 9319 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Ghosh, S.R. Polaki, M. Kamruddin, S.M. Jeong, K. Ostrikov, J. Phys. D 51, 145303 (2018)CrossRefGoogle Scholar
  15. 15.
    R.K. Chava, S.Y. Oh, Y.T. Yu, CrystEng Comm 18, 3655 (2018)CrossRefGoogle Scholar
  16. 16.
    L.D. Kadam, P.S. Patil, Mater. Chem. Phys. 68, 225 (2001)CrossRefGoogle Scholar
  17. 17.
    V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, App. Surf. Sci. 252, 7487 (2006)CrossRefGoogle Scholar
  18. 18.
    Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 29, 3808 (2018)Google Scholar
  19. 19.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci.: Mater. Electron. 29, 6183 (2018)Google Scholar
  20. 20.
    O. Bockman, T. Ostvold, G.A. Voyiatzis, G.N. Papatheodorou, Hydrometallurgy 55, 93 (2000)CrossRefGoogle Scholar
  21. 21.
    Y.M. Hunge, MOJ Polym. Sci. 1, 00020 (2017)Google Scholar
  22. 22.
    S. Xiong, C. Yuan, X. Zhang, B. Xi, Y. Qian, Chem. Eur. J. 15, 5320 (2009)CrossRefGoogle Scholar
  23. 23.
    S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 15646 (2011)CrossRefGoogle Scholar
  24. 24.
    R. Tummala, R.K. Guduru, P.S. Mohanty, J. Power Sources 209, 44 (2012)CrossRefGoogle Scholar
  25. 25.
    A.A. Yadav, A.C. Lokhande, J.H. Kim, Int. J. Hydrog. Energy 41, 18311 (2016)CrossRefGoogle Scholar
  26. 26.
    I.G. Casella, M. Gatta, J. Electroanal. Chem. 534, 31 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Zheng, F. Tang, M. Lim, A. Mukherji, H. Yan, L. Wang, G. Lu, J. Power Sources 195, 680 (2010)CrossRefGoogle Scholar
  28. 28.
    A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 443, 22 (2016)CrossRefGoogle Scholar
  29. 29.
    S.B. Kulkarni, V.S. Jamadade, D.S. Dhawale, C.D. Lokhande, Appl. Surf. Sci. 255, 8390 (2009)CrossRefGoogle Scholar
  30. 30.
    A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhade, J. Ind. Eng. Chem. 56, 90 (2017)CrossRefGoogle Scholar
  31. 31.
    R.B. Pujari, A.C. Lokhande, A.A. Yadav, J.H. Kim, C.D. Lokhande, Mater. Des. 108, 510 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe Institute of ScienceMumbaiIndia
  2. 2.Department of PhysicsSavitribai Phule UniversityPuneIndia

Personalised recommendations