Advertisement

Enhanced performance of Sb2S3 mesoscopic sensitized solar cells employing TiO2:Nb compact layer

  • Victor Odari
  • Robinson Musembi
  • Julius Mwabora
Article

Abstract

This paper reports on the enhancement of charge transport and recombination by niobium doped compact layers of TiO2 in a solar cell with Sb2S3 absorber layer by characterizing both thin films of TiO2:Nb and working solar cell devices with the layer stack FTO/cp-TiO2:Nb/mp-TiO2/Sb2S3/P3HT/MoOx/Ag. The electron transport layers of TiO2 doped with 0.14 and 0.27 at.% Nb were prepared by spin coating and have no structural change as determined from the analysis of GIXRD spectra. SEM images show thin pin hole free layers of the cp-TiO2:Nb on FTO crystals that are agglomerates of particles. Analysis of the current–voltage curves of the solar cells with Sb2S3 as the absorber material showed increased short-circuit current, fill factor and power conversion efficiency from 1.3 to 1.7%. The enhancement of the device performance is attributed to substitution of Ti ions with Nb ions in the TiO2 resulting in a change in the band alignment of the solar cells with Nb content. This results in increase in charge recombination resistance in the Sb2S3 layer as determined from the analysis of the impedance spectroscopy measurements.

Notes

Acknowledgements

The authors would like to acknowledge financial support from International Science Programme (ISP) and DAAD for research facilitation and Ph.D scholarship at University of Nairobi respectively. They also want to acknowledge Pascal Kaienburg, Shuo Wang, Dr. Benjamin Klingebiel and Prof. Thomas Kirchartz from IEK5-Photovoltaik, Forschungszentrum Jülich, Germany for their guidance and support in carrying out this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Abulikemu, S. Del Gobbo, D.H. Anjum, M.A. Malik, O.M. Bakr, Colloidal Sb2S3 nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells. J. Mater. Chem. A 4, 6809–6814 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Escorcia-García, D. Becerra, M.T.S. Nair, P.K. Nair, Heterojunction CdS/Sb2S3 solar cells using antimony sul fi de thin films prepared by thermal evaporation. Thin Solid Films 569, 28–34 (2014)CrossRefGoogle Scholar
  3. 3.
    R.G.S. Marquina, T.G. Sanchez, N.R. Mathews, X. Mathew, Vacuum coated Sb2S3 thin fi lms: thermal treatment and the evolution of its physical properties. Mater. Res. Bull. 90, 285–294 (2017)CrossRefGoogle Scholar
  4. 4.
    M.H. Lakhdar, B. Ouni, M. Amlouk, Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films. Opt. Int. J. Light Electron Opt. 125(10), 2295–2301 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Shaji, L.V. Garcia, S.L. Loredo, B. Krishnan, J.A.A. Martinez, T.K. Das, Roy, D.A. Avellaneda, Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl. Surf. Sci. 393, 369–376 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Yuan, H. Deng, D. Dong, X. Yang, K. Qiao, C. Hu, Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol. Energy Mater. Sol. Cells 157, 887–893 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Deng, S. Yuan, X. Yang, F. Cai, C. Hu, K. Qiao, J. Zhang, J. Tang, H. Song, Z. He, Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-tmosphere annealing. Mater. Today Energy 3, 15–23 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Ito, K. Tsujimoto, D.C. Nguyen, K. Manabe, H. Nishino, Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrogen Energy 38(36), 16749–16754 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Mushtaq, B. Ismail, M. Aurang Zeb, N.J. Suthan, Kissinger, A. Zeb, Low-temperature synthesis and characterization of Sn-doped Sb2S3 thin film for solar cell applications. J. Alloys Compd. 632, 723–728 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Darga, D. Mencaraglia, C. Longeaud, T.J. Savenije, B.O. Regan, T. Muto, B. Delatouche, G. Dennler,, C. Bp, S.A. Cedex, I. E. S. a S, On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells. J. Phys. Chem. C 117, 20525–20530 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Sang, C. Lim, D. Hyeong, J. Hyuck, S. Hyuk, K. Jung, Oxide-free Sb2S3 sensitized solar cells fabricated by spin and heat-treatment of Sb(III)(thioacetamide)2Cl3. Org. Electron. 21, 155–159 (2015)CrossRefGoogle Scholar
  12. 12.
    C. Gao, M. Xu, B.K. Ng, L. Kang, L. Jiang, Y. Lai, F. Liu, In situ growth of Sb2S3 thin films by reactive sputtering on n-Si (100) substrates for top sub-cell of silicon based tandem solar cells. Mater. Lett. 195, 186–189 (2017)CrossRefGoogle Scholar
  13. 13.
    R.G.A. Garcia, C.A.M. Avendaño, M. Pal, F.P. Delgado, N.R. Mathews, Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater. Sci. Semicond. Process. 44, 91–100 (2016)CrossRefGoogle Scholar
  14. 14.
    D.-H. Kim, S.-J. Lee, M.S. Park, J.-K. Kang, J.H. Heo, S.H. Im, S.-J. Sung, Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition. Nanoscale 6(23), 14549–14554 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Yin, Y. Guo, Z. Xue, P. Xu, M. He, B. Liu, Enhance the performance of perovskite-sensitized mesoscopic solar cells by employing Nb-doped TiO2 compact layer. Nano Res. 8(6), 1997–2003 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Kim, I. Mora-sero, V. Gonzalez-pedro, F. Fabregat-santiago, E.J. Juarez-perez, N. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 1–7 (2013)Google Scholar
  17. 17.
    E.J. Juarez-perez, M. Wu, F. Fabregat-santiago, K. Lakus-wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-sero, Role of the selective contacts in the performance of lead halide perovskite solar cells. Phys. Chem. Lett. 5, 680–685 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Lek, P. Kongsong, S. Niyomwas, V. Rachpech, Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2. Sci. World J. (2014).  https://doi.org/10.1155/2014/869706 CrossRefGoogle Scholar
  19. 19.
    L. Jiang, L. Sun, D. Yang, J. Zhang, Y. Li, K. Zou, W. Deng, Niobium-doped (001)-dominated anatase TiO2 nanosheets as photoelectrode for efficient dye-sensitized solar cells. Appl. Mater. Interfaces 9, 9576–9583 (2017)CrossRefGoogle Scholar
  20. 20.
    E. Uyanga, A. Gibaud, P. Daniel, C. Lee, D. Sangaa, G. Sevjidsuren, P. Altantsog, T. Beuvier, A.M. Balagurov, Structural and vibrational investigations of Nb- doped TiO2 thin films. Mater. Res. Bull. 60, 222–231 (2014)CrossRefGoogle Scholar
  21. 21.
    C.H. Lee, C.H. Lee, S.W. Rhee, H.W. Choi, Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells. Nanoscale Res. Lett. 7(1), 48 (2012)CrossRefGoogle Scholar
  22. 22.
    M.A. Sánchez-garcía, X. Bokhimi, A. Maldonado-álvarez, A.E. Jiménez-gonzález, Effect of anatase synthesis on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 10(306), 1–13 (2015)Google Scholar
  23. 23.
    Y. Sato, Y. Sanno, C. Tasaki, N. Oka, Electrical and Optical properties of Nb-doped TiO2 films deposited by dc magnetron sputtering using slightly reduced Nb-doped TiO2—x ceramic targets. J. Vac. Sci. Technol. A 4, 851–855 (2010)Google Scholar
  24. 24.
    T. Theivasanthi, M. Alagar, Titanium Dioxide (TiO2) Nanoparticles XRD Analyses: An Insight, eprint arXiv:1307.1091 (2013)Google Scholar
  25. 25.
    N.D. Abazović, L. Mirenghi, I.A. Janković, N. Bibić, D.V. Šojić, B.F. Abramović, M.I. Čomor, Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions. Nanoscale Res. Lett. 4(6), 518 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Schmid, XPST XPS Analysis Plugin for Igor Pro from Wavemetrics (Philips University Marburg, Hesse, 2015)Google Scholar
  27. 27.
    M. Schmid, H. Steinrück, J.M. Gottfried, A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines. Surf. Interface Anal. 47(11), 1080–1080 (2015)CrossRefGoogle Scholar
  28. 28.
    I.S. Gilmore, Surface Analysis—The Principal Techniques, 2nd edn. (Wiley, Hoboken, 2009)Google Scholar
  29. 29.
    C. Oikonomou, Surface Characterization of Soft Magnetic Composite Powder and Compacts (Chalmers University of Technology, Göteborg, 2014)Google Scholar
  30. 30.
    A.K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, S. Ismat, Experimental studies on vacancy induced ferromagnetism in undoped. Solid State Commun. 144 (7–8), 334–338 (2007)CrossRefGoogle Scholar
  31. 31.
    A.J. Gardecka, Synthesis and Characterisation of Niobium Doped TiO 2 Semiconducting Materials (University College London, London, 2016)Google Scholar
  32. 32.
    R.L. Kurtz, V.E. Henrich, Comparison of Ti 2p core-level peaks from TiO2, Ti2O3, and Ti metal, by XPS. Surf. Sci. Spectra 5(3), 179 (1998)CrossRefGoogle Scholar
  33. 33.
    I. Mora-Sero’, S.G. Nez, F. Fabregat-Santiago, E. Azaceta, R. Tena-Zaera, J. Bisquert, Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. Phys. Chem. Chem. Phys. 13 15, 7162–7169 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Bisquert, J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5(24), 5360–5364 (2003)CrossRefGoogle Scholar
  35. 35.
    F. Fabregat-santiago, J. Bisquert, G. Garcia-belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 87, 117–131 (2005)CrossRefGoogle Scholar
  36. 36.
    S. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J. Lee, J.Y. Kim, H.S. Jung, K.S. Hong, Nb-Doped TiO2: a new compact layer material for TiO2 dye-sensitized solar cells. J. Phys. Chem. B 113, 6878–6882 (2009)Google Scholar
  37. 37.
    Y.Y. Proskuryakov, K. Durose, M.K. Al Turkestani, J. Bisquert, V. Barrioz, D. Lamb, S.J.C. Irvine, E.W. Jones, Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination. J. Appl. Phys. 106, 1–9 (2009)CrossRefGoogle Scholar
  38. 38.
    P.P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Sero, J. Bisquert, Hole transport and recombination in all-solid Sb2S3—sensitized TiO2 solar cells using CuSCN as hole transporter. J. Phys. Chem. C 116, 1579–1587 (2012)CrossRefGoogle Scholar
  39. 39.
    F. Fabregat-santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S.M. Zakeeruddin, M. Gratzel, Electron transport and recombination in solid-state dye solar cell with spiro-ometad as hole conductor. J. Am. Chem. Soc. 131(2), 558–562 (2009)CrossRefGoogle Scholar
  40. 40.
    P.P. Boix, Y.H. Lee, F. Fabregat-santiago, S.H. Im, I. Mora-sero, J. Bisquert, S. Il Seok, From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6(1), 873–880 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Na-phattalung, M.F. Smith, K. Kim, M. Du, S. Wei, S.B. Zhang, S. Limpijumnong, R. Tio, First-principles study of native defects in anatase TiO2. Phys. Rev. B 73(125205), 1–6 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, School of Physical SciencesUniversity of NairobiNairobiKenya
  2. 2.Department of Physics, School of Natural SciencesMasinde Muliro University of Science and TechnologyKakamegaKenya

Personalised recommendations