Cu–Ni–Gd coating with improved corrosion resistance on linen fabric by electroless plating for electromagnetic interference shielding

  • Lin Zhu
  • Siyi Bi
  • Hang Zhao
  • Lei Hou
  • Yumeng Xu
  • Yinxiang LuEmail author


The main objective of this research is to fabricate conductive fabrics with good electromagnetic interference (EMI) shielding effectiveness (SE) and improved corrosion resistance. Such conductive fabrics can be prepared by a cost-effective electroless plating method with combination of eco-friendly dopamine (DoPA) self-polymerization technology, which involves successive steps of alkali treatment, 3-aminopropyltrimethoxysilane modification, Cobalt (Co) nanoparticles activation, Copper–Nickel–Gadolinium (Cu–Ni–Gd) deposition and Dopamine (DoPA) self-assembly. The functional groups introduced in modification and activation procedures are verified by FT-IR and XPS measurements. Refined effects of Gd on the structures and morphologies of resulting Cu–Ni–Gd coatings are illustrated by X-ray diffraction and field emission-scanning electron microscopy (FE-SEM) measurements. EMI SE values of Cu–Ni–Gd shielding fabrics are enhanced with increment of 5–7 decibels (dB) ranging from 30 to 4500 MHz compared with that of Gd-free Cu–Ni shielding fabrics. Furthermore, DoPA membrane polymerized on the top of metallic coatings acting as a barrier for corrosion media is demonstrated by measuring the corrosion resistance of DoPA coated shielding fabrics in 3.5wt.% NaCl solution. Overall, Cu–Ni–Gd shielding fabric with excellent EMI SE and durability endow them great potential in EMI shielding application.



This work was supported by the National Natural Science Foundation of China (No. 61371019), the research Grant (Nos. 17DZ1202300, 16DZ2260600) from Science and Technology Commission of Shanghai Municipality, the Shanghai Technical Trade Solutions Project (16TBT011),and the key research program (No. BE2015649) of Science and Technology Commission Foundation of Jiangsu Province.


  1. 1.
    S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Carbon 68, 118 (2014)CrossRefGoogle Scholar
  2. 2.
    C.S. Ramya, K. Karthiyanee, S. Vinutha, Indian J. Otol. 17, 159 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Adibzadeh, G.C.V. Rhoon, G.M. Verduijn, N.C. Naus-Postema, M.M. Paulides, Phys. Med. Biol. 61, 488 (2015)CrossRefGoogle Scholar
  4. 4.
    I. Jekova, V. Krasteva, S. Me´ne´tre´, T. Stoyanov, I. Christov, R. Fleischhackl, J.J. Schmid, J.P. Didon, Physiol. Meas. 30, 695 (2009)CrossRefGoogle Scholar
  5. 5.
    H. Zhao, L. Hou, S.Y. Bi, Y.X. Lu, ACS Appl. Mater. Interfaces 9, 33059 (2017)CrossRefGoogle Scholar
  6. 6.
    S.Y. Bi, H. Zhao, L. Hou, Y.X. Lu, Appl. Surf. Sci. 419, 465 (2017)CrossRefGoogle Scholar
  7. 7.
    X.P. Gan, Y.T. Wu. L. Liu, B. Shen, W.B. Hu, J. Alloy. Compd. 455, 308 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Zhao, L. Hou, B.J. Lan, Y.X. Lu, J. Mater. Sci. 27, 13300 (2016)Google Scholar
  9. 9.
    C. Wang, R.H. Guo, J.W. Lan, L. Tan, S.X. Jiang, C. Xiang, J. Mater. Sci. 29, 8010 (2018)Google Scholar
  10. 10.
    S.X. Jiang, J.T. Xu, Z.M. Chen, R.H. Guo, D.G. Miao, L.H. Peng, Y.X. Wang, S.M. Shang, J. Mater. Sci. 29, 5624 (2018)Google Scholar
  11. 11.
    M.N. Qiu, Y. Zhang, B.Y. Wen, J. Mater. Sci. 29, 10437 (2018)Google Scholar
  12. 12.
    P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Mater. Chem. Phys. 113, 919 (2009)CrossRefGoogle Scholar
  13. 13.
    A.J. Zhou, X.Y. Dai, Y.T. Lu, Q.J. Wang, M.S. Fu, J.Z. Li, ACS Appl. Mater. Interfaces 8, 34123 (2016)CrossRefGoogle Scholar
  14. 14.
    C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, E. Pop, Nano Lett. 16, 3824 (2016)CrossRefGoogle Scholar
  15. 15.
    H.S. Lee, J.K. Singh, J.H. Park, Constr. Build. Mater. 113, 905 (2016)CrossRefGoogle Scholar
  16. 16.
    S. An, H.S. Jo, D.Y. Kim, H.J. Lee, B.K. Ju, S.S. Al-Deyab, J.H. .Ahn, Y.L. Qin, M.T. Swihart, A.L. Yarin, S.S. Yoon, Adv. Mater. 28, 7149 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.C. Liao, Z.K. Kao, ACS Appl. Mater. Interfaces 4, 5109 (2012)CrossRefGoogle Scholar
  18. 18.
    K.J. Ji, H.H. Zhao, J. Zhang, J. Chen, Z.D. Dai, Appl. Surf. Sci. 311, 351 (2014)CrossRefGoogle Scholar
  19. 19.
    K.J. Ji, H.H. Zhao, J. Zhang, J. Chen, Z.D. Dai, Mater. Lett. 122, 244 (2014)CrossRefGoogle Scholar
  20. 20.
    H.A. Sorkhabi, M.M. Haghighi, M.G. Hosseini, Surf. Coat. Technol. 202, 1615 (2008)CrossRefGoogle Scholar
  21. 21.
    Y.J. Chen, Y. Li, M.C. Yip, N.H. Tai. Compos. Sci. Technol. 80, 80 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.J. Liu, D. Song, C.X. Wu, J.S. Leng, Compos. Part B 63, 34 (2014)CrossRefGoogle Scholar
  23. 23.
    G.R. Li, Y.X. Tong, Y. Wang, G.K. Liu, Electrochim. Acta 48, 4061 (2003)CrossRefGoogle Scholar
  24. 24.
    H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, C.H. Yan, J. Am. Chem. Soc. 128, 6426 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Zhou, Y. Sun, X.X. Du, L.Q. Xiong, H. Hu, F.Y. Li, Biomaterials 31, 3287 (2010)CrossRefGoogle Scholar
  26. 26.
    T.P. Xuan, G.Z. Yang, L.L. Yang, Z.T. Ju, J. Rare Earths 24, 389 (2006)CrossRefGoogle Scholar
  27. 27.
    H.S. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318, 426 (2007)CrossRefGoogle Scholar
  28. 28.
    M.G. Northolt, H. Boerstoel, H. Maatman, R. Huisman, J. Veurink, H. Elzerman, Polymer 42, 8249 (2001)CrossRefGoogle Scholar
  29. 29.
    B.E. Keiser, M. Dedham: Artech House, Inc., pp. 341, (1979)Google Scholar
  30. 30.
    S.X. Jiang, R.H. Guo, Surf. Coat. Technol. 205, 4274 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Kumari, A. Kumar, A.P. Singh, M. Garg, P.K. Dutta, S.K. Dhawan, R.B. Mathur, RSC Adv. 4, 23202 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das, N. Singha, N. Ch. Das. Chem. Eng. J. 344, 138 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Mondal, S. Ganguly, P. Das, P. Bhawal, T.K. Das, R. Ravindren, S. Ghosh, N. C. Das, Mater. Sci. Eng. 225, 140 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren, S. Sit, G. Chakraborty, N. C. Das, Mater. Res. Express 4, 105039 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Mondal, S. Ganguly, P. Das, D. Khastgir, N. C. Das. Compos. Part B 119, 41 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Bhawal, S. Ganguly, T.K. Das, S. Mondal, S. Choudhury, N.C. Das, Compos. Part B 134, 46 (2018)CrossRefGoogle Scholar
  37. 37.
    S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P.K. Maji, N. Singha, N. C. Das. J. Mater. Sci. 29, 10177 (2018)Google Scholar
  38. 38.
    Y. Li, M. Liu, C. Xiang, Q.J. Xie, S.Z. Yao, Thin Solid Films 497, 270 (2006)CrossRefGoogle Scholar
  39. 39.
    M.S. Hsu, Y.L. Chen, C.Y. Lee, H.T. Chiu, ACS Appl. Mater. Interfaces 4, 5570 (2012)CrossRefGoogle Scholar
  40. 40.
    A.C. Anithaa, N. Lavanya, K. Asokan, C. Sekar, Electrochim. Acta 167, 294 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Luczak, Electrochim. Acta 53, 5725 (2008)CrossRefGoogle Scholar
  42. 42.
    J. J.Ou, S. Wang, Liu et al., Appl. Surf. Sci. 256, 894 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lin Zhu
    • 1
  • Siyi Bi
    • 1
  • Hang Zhao
    • 1
    • 3
  • Lei Hou
    • 1
  • Yumeng Xu
    • 1
  • Yinxiang Lu
    • 1
    • 2
    Email author
  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina
  2. 2.Shanghai Institute of Materials GenomeShanghaiChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations