Advertisement

Observation of spin glass ordering and Griffiths-like phase in polycrystalline Sm0.75Sr0.25CoO3 nanoparticles

  • B. Sathyamoorthy
  • A. Raja
  • G. Chandrasekaran
Article
  • 62 Downloads

Abstract

In this present work, polycrystalline Sm0.75Sr0.25CoO3 nanoparticles are synthesized by sol–gel combustion route and their structural and magnetic properties are reported. The thermal study of as-prepared powder indicates that Sm0.75Sr0.25CoO3 materializes at about 950 °C. The X-ray diffraction pattern of Sm0.75Sr0.25CoO3 confirms the single-phase perovskite structure with orthorhombic symmetry and average crystallite size is found to be 17 nm. Field emission scanning electron microscope images of Sm0.75Sr0.25CoO3 show the spherical particles. The temperature dependence of zero field cooled and field cooled magnetization curves are measured under the applied magnetic fields such as H = 100 Oe, 1000 Oe and 10,000 Oe show magnetic irreversibility for the present sample. The present sample exhibits a paramagnetic to ferromagnetic transition with a Curie temperature (TC) is equal to 95 K at 100 Oe. Field dependence magnetization shows magnetic hysteresis at low temperature with a coercive field of 0.38 T and linear dependence at high temperature corresponds to the paramagnetic region. The temperature dependence of inverse susceptibility above TC confirms the presence of Griffiths phase which proves the existence of ferromagnetic clusters in the paramagnetic region. The Arrott plot indicates that the second order phase transition is taking place. AC susceptibility of Sm0.75Sr0.25CoO3 certifies the spin glass nature of the present sample. These findings suggest promising applications of Sm0.75Sr0.25CoO3 materials in colossal magneto resistance devices.

Notes

Acknowledgements

The authors thank the Central Instrumentation Facility, Pondicherry University for providing experimental facilities and PSG COE INDUTECH for FESEM facility. B. Sathyamoorthy thanks UGC for the financial assistance in the form of Basic Science Research fellowship (File No. PU/PHYS/GC/UGC-BSR/2014-15/724).

References

  1. 1.
    J.B. Goodenough, Electronic and ionic transport properties and other physical aspects of perovskites. Rep. Prog. Phys. 67, 1915–1993 (2004).  https://doi.org/10.1088/0034-4885/67/11/R01 CrossRefGoogle Scholar
  2. 2.
    A.K. Kundu, Magnetic Perovskites: Synthesis, Structure and Physical Properties (Springer, New York, 2016).  https://doi.org/10.1007/978-81-322-2761-8 CrossRefGoogle Scholar
  3. 3.
    Y.P. Fu, J. Ouyang, C.H. Li, S.H. Hu, Int. J. Hydrogen Energy 37, 19027–19035 (2012)CrossRefGoogle Scholar
  4. 4.
    H.S. Song, J.H. Min, J. Kim, J. Moon, Phase stability of Sm0.5Sr0.5CoO3 cathodes for on-planar type, single-chamber, solid oxide fuel cells. J. Power Sources. 191, 269–274 (2009).  https://doi.org/10.1016/j.jpowsour.2009.02.028 CrossRefGoogle Scholar
  5. 5.
    C.R. Michel, E. Delgado, G. Santillan, A.H. Martinez, A.C. Chavez, Mater. Res. Bull. 42, 84–93 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Delgado, C.R. Michel, CO2 and O2 sensing behavior of nanostructured barium-doped SmCoO3. Mater. Lett. 60, 1613–1616 (2006).  https://doi.org/10.1016/j.matlet.2005.11.080 CrossRefGoogle Scholar
  7. 7.
    K.H. Jung, S. Choi, H.H. Park, W.S. Seo, Curr. Appl. Phys. 11, S260–S265 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Thornton, B.C. Tofield, D.E. Williams, Solid State Commun. 44, 1213–1216 (1982)CrossRefGoogle Scholar
  9. 9.
    J. Perez, J. Garcia, J. Blasco, J. Stankiewicz, Phys. Rev. Lett. 80, 2401–2404 (1998)CrossRefGoogle Scholar
  10. 10.
    J.B. Goodenough, Perspective on engineering transition-metal oxides. Chem. Mater. 26, 820–829 (2014).  https://doi.org/10.1021/cm402063u CrossRefGoogle Scholar
  11. 11.
    P. Tong, B. Kim, D. Kwon, T. Qian, S.I. Lee, S.W. Cheong et al., Griffiths phase and thermomagnetic irreversibility behavior in slightly electron-doped manganites Sm1–xCaxMnO3 (0.80 < x < 0.92). Phys. Rev. B 77, 184432 (2008).  https://doi.org/10.1103/PhysRevB.77.184432 CrossRefGoogle Scholar
  12. 12.
    A.P. Ramirez, Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).  https://doi.org/10.1088/0953-8984/9/39/005 CrossRefGoogle Scholar
  13. 13.
    I.P. Muthuselvam, R. Sankar, A.V. Ushakov, G.N. Rao, S.V. Streltsov, F.C. Chou, Two-step antiferromagnetic transition and moderate triangular frustration in Li2Co(WO4)2. Phys. Rev. B 90, 1–7 (2014).  https://doi.org/10.1103/PhysRevB.90.174430 CrossRefGoogle Scholar
  14. 14.
    A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I. Panneer Muthuselvam, F.C. Chou et al., Structural, magnetic and electrical analysis of La1–xNdxCrO3 (0.00 < x < 0.15): synthesised by sol–gel citrate combustion method. J. Sol-Gel Sci. Technol. 80, 827–839 (2016).  https://doi.org/10.1007/s10971-016-4151-8 CrossRefGoogle Scholar
  15. 15.
    M.B. Salamon, S.H. Chun, Griffiths singularities and magnetoresistive manganites. Phys. Rev. B 68, 14411 (2003).  https://doi.org/10.1103/PhysRevB.68.014411 CrossRefGoogle Scholar
  16. 16.
    J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, E. Dagotto, Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 87, 277202 (2001).  https://doi.org/10.1103/PhysRevLett.87.277202 CrossRefGoogle Scholar
  17. 17.
    A. Karmakar, S. Majumdar, S. Kundu, T.K. Nath, S. Giri, A Griffiths-like phase in antiferromagnetic R0.5Eu0.5MnO3 (R = Pr, Nd, Sm). J. Phys. Condens. Matter. 25, 66006 (2013).  https://doi.org/10.1088/0953-8984/25/6/066006 CrossRefGoogle Scholar
  18. 18.
    R. Zeng, J.C. Debnath, D.P. Chen, P. Shamba, J.L. Wang, S.J. Kennedy et al., Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3. J. Appl. Phys. 109, 07E146 (2011).  https://doi.org/10.1063/1.3562518 CrossRefGoogle Scholar
  19. 19.
    J. Burgy, A. Moreo, E. Dagotto, Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites. Phys. Rev. Lett. 92, 97202–97201 (2004).  https://doi.org/10.1103/PhysRevLett.92.097202 CrossRefGoogle Scholar
  20. 20.
    T. Suzuki, P. Jasinski, V. Petrovsky, F. Dogan, H.U. Anderson, Solid State Ionics 175, 437–439 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Androulakis, N. Katsarakis, J. Giapintzakis, Phys. Rev. B 64, 174401-1–174401-7 (2001)CrossRefGoogle Scholar
  22. 22.
    I.G. Deac, R. Tetean, I. Balasz, E. Burzo, J. Magn. Magn. Mater. 322, 1185–1188 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Spooren, R.I. Walton, F. Millange, J. Mater. Chem. 15, 1542–1551 (2005)CrossRefGoogle Scholar
  24. 24.
    B. Sathyamoorthy, P.M. Md Gazzali, C. Murugesan, G. Chandrasekaran, Electrical properties of samarium cobaltite nanoparticles synthesized using sol–gel autocombustion route. Mater. Res. Bull. 53, 169–176 (2014).  https://doi.org/10.1016/j.materresbull.2014.02.009 CrossRefGoogle Scholar
  25. 25.
    B. Sathyamoorthy, A. Raja, G. Chandrasekaran, Observation of magneto-electric coupling in Sm0.5Sr0.5CoO3 nanoparticles. J. Mater. Sci. Mater. Electron. 29(6), 5098–5109 (2018).  https://doi.org/10.1007/s10854-017-8473-2 CrossRefGoogle Scholar
  26. 26.
    K. Omri, A. Bettaibi, K. Khirouni, L. El, Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B 537, 167–175 (2018)CrossRefGoogle Scholar
  27. 27.
    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Maa, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. Ceram. Int. 42, 12838–12842 (2016)CrossRefGoogle Scholar
  28. 28.
    S.M. Zhou, Y. Li, Y.Q. Guo, J.Y. Zhao, X. Cai, L. Shi, Observation of a Griffiths-like phase in Ca-doped cobaltites. J. Appl. Phys. 114, 163903 (2013).  https://doi.org/10.1063/1.4826632 CrossRefGoogle Scholar
  29. 29.
    W. Liu, L. Shi, S. Zhou, J. Zhao, Y. Li, Y. Guo, Griffiths phase, spin-phonon coupling, and exchange bias effect in double perovskite Pr2CoMnO6. J. Appl. Phys. 116, 2012–2017 (2014).  https://doi.org/10.1063/1.4902078 CrossRefGoogle Scholar
  30. 30.
    L. Shi, C. Zeng, Y. Jin, T. Wang, N. Tsubaki, A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catal. Sci. Technol. 2, 2569–2577 (2012).  https://doi.org/10.1039/c2cy20423a CrossRefGoogle Scholar
  31. 31.
    R.N. Bhowmik, R. Ranganathan, Re-entrant spin glass and magnetoresistance in Co0.2Zn0.8Fe1.6Ti0.4O4 spinel spinel oxide. J. Appl. Phys. 93, 2780 (2003).  https://doi.org/10.1063/1.1544071 CrossRefGoogle Scholar
  32. 32.
    C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).  https://doi.org/10.1103/PhysRev.82.403 CrossRefGoogle Scholar
  33. 33.
    J. Wu, C. Leighton, Glassy ferromagnetism and magnetic phase separation in La1–xSrxCoO3. Phys. Rev. B 67, 174408 (2003).  https://doi.org/10.1103/PhysRevB.67.174408 CrossRefGoogle Scholar
  34. 34.
    X. Xu, L. Jiang, J. Shen, Z. Chen, Z. Xu, Relationship between spin state of Co ions and thermopower in La1–xSrxCoO3. Phys. Lett. A. 351, 431–434 (2006).  https://doi.org/10.1016/j.physleta.2005.11.027 CrossRefGoogle Scholar
  35. 35.
    M.B. Salamon, P. Lin, S.H. Chun, Colossal magnetoresistance is a Griffiths singularity. Phys. Rev. Lett. 88, 1972031–1972034 (2002).  https://doi.org/10.1103/PhysRevLett.88.197203 CrossRefGoogle Scholar
  36. 36.
    R.B. Griffiths, Nonanalytic behavior above the critical point in a random ising ferromagnet. Phys. Rev. Lett. 23, 17–19 (1969)CrossRefGoogle Scholar
  37. 37.
    S. Kundu, T.K. Nath, Suppression of a glassy magnetic state and emergence of a Griffiths-like phase on size reduction in Nd0.8Sr0.2MnO3. J. Appl. Phys. 111, 113903 (2012).  https://doi.org/10.1063/1.4722322 CrossRefGoogle Scholar
  38. 38.
    A.K. Pramanik, A. Banerjee, Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5Sr0.5Mn1–yGayO3 (y = 0.0, 0.025, and 0.05). Phys. Rev. B 81, 24431 (2010).  https://doi.org/10.1103/PhysRevB.81.024431 CrossRefGoogle Scholar
  39. 39.
    D. Bhoi, N. Khan, A. Midya, M. Nandi, A. Hassen, P. Choudhury, P. Mandal, Formation of nanosize Griffiths-like clusters in solid solution of ferromagnetic manganite and cobaltite. J. Phys. Chem. C 117, 16658–16664 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Zhou, Y. Guo, J. Zhao, L. He, L. Shi, Size-induced Griffiths phase and second-order ferromagnetic transition in Sm0.5Sr0.5MnO3 nanoparticles. J. Phys. Chem. C 115, 1535–1540 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Arrott, Criterion for ferromagnetism from observations of magnetic isotherias. Phys. Rev. B 108, 1394–1396 (1957).  https://doi.org/10.1103/PhysRev.108.1394 CrossRefGoogle Scholar
  42. 42.
    A. Kumar, R.P. Tandon, V.P.S. Awana, Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10–δ magneto superconductor. J. Appl. Phys. 110, 43926 (2011).  https://doi.org/10.1063/1.3626824 CrossRefGoogle Scholar
  43. 43.
    S. Mukherjee, P.A.J.R. Ranganathan, P.S. Anilkumar, Static and dynamic response of cluster glass in La0.5Sr0.5CoO3. Phys. Rev. B 54, 9267–9274 (1996)CrossRefGoogle Scholar
  44. 44.
    A. Kumar, R.P. Tandon, V.P.S. Awana, Successive spin glass, cluster ferromagnetic, and superparamagnetic transitions in RuSr2Y1.5Ce0.5Cu2O10 complex magneto-superconductor, Eur. Phys. J. B (2012).  https://doi.org/10.1140/epjb/e2012-30075-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, School of Physical, Chemical and Applied SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations