Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating

  • Biao Guo
  • Wenyu Diao
  • Tingting Yuan
  • Yuan Liu
  • Qi Yuan
  • Guannan Li
  • Jingang YangEmail author


Carbon-coating Na3V2(PO4)2F3 nanoparticles (NVPF@C NP) were prepared by a hydrothermal assisted sol–gel method and applied as cathode materials for Na-ion batteries. The as-prepared nanocomposites were composed of Na3V2(PO4)2F3 nanoparticles with a typical size of ~ 100 nm and an amorphous carbon layer with the thickness of ~ 5 nm. Cyclic voltammetry, rate and cycling, and electrochemical impedance spectroscopy tests were used to discuss the effect of carbon coating and nanostructure. Results display that the as-prepared NVPF@C NP demonstrates a higher rate capability and better long cycling performance compared with bare Na3V2(PO4)2F3 bulk (72 mA h g−1 at 10 C vs 39 mA h g−1 at 10 and 1 C capacity retention of 95% vs 88% after 50 cycles). The remarking electrode performance was attributed to the combination of nanostructure and carbon coating, which can provide short Na-ion diffusion distance and rapid electron migration.



This work was supported by grants from the National Natural Science Foundation of China (Grant No. 21503170) and Fundamental Research Funds for the Central Universities (XDJK2017D022, XDJK2018C006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_9722_MOESM1_ESM.docx (1.4 mb)
Electronic Supplementary Information (DOCX 1477 KB)


  1. 1.
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114, 11636 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Xiang, K. Zhang, J. Chen, Adv. Mater. 27, 5343 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Pan, Y. Hu, L. Chen, Energy Environ. Sci. 6, 2338 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Kundu, E. Talaie, V. Duffort, L. Nazar, Angew. Chem. Int. Ed. 54, 3431 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Park, D. Seo, H. Kwon, B. Kim, J. Kim, H. Kim, I. Kim, H. Yoo, K. Kang, J. Am. Chem. Soc. 135, 13870 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Cushing, J. Goodenough, J. Solid State Chem. 162, 176 (2001)CrossRefGoogle Scholar
  7. 7.
    Y. Yao, Y. Jiang, X. Sun, Y. Yu, Nanoscale 9, 10880 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Jung, C. Lim, D. Kim, J. Mater. Chem. A 1, 11350 (2013)CrossRefGoogle Scholar
  9. 9.
    Q. Liu, X. Meng, Z. Wei, D. Wang, Y. Gao, Y. Wei, F. Du, G. Chen, ACS Appl. Mater. Interfaces 8, 31709 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Song, X. Ji, J. Chen, Z. Wu, Y. Zhu, K. Ye, H. Hou, M. Jing, C.E. Banks, Phys. Chem. Chem. Phys. 17, 159 (2015)CrossRefGoogle Scholar
  11. 11.
    R.K.B. Gover, A. Bryan, P. Burns, J. Barker, Solid State Ionics 177, 1495 (2006)CrossRefGoogle Scholar
  12. 12.
    R.A. Shakoor, D. Seo, H. Kim, Y. Park, J. Kim, S. Kim, H. Gwon, S. Lee, K. Kang, J. Mater. Chem. 22, 20535 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Song, X. Cao, Z. Wu, J. Chen, Y. Zhu, H. Hou, Q. Lan, X. Ji, Langmuir 30, 12438 (2014)CrossRefGoogle Scholar
  14. 14.
    J.M. Le Meins, M.P. Crosnier-Lopez, A. Hemon-Ribaud, G. Courbion, J. Solid State Chem. 148, 260 (1999)CrossRefGoogle Scholar
  15. 15.
    W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C.E. Banks, J. Power Sources 256, 258 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao, P. Li, C. Jin, Y. Li, Nano Energy 20, 168 (2016)CrossRefGoogle Scholar
  17. 17.
    N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11, 512 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong, P. Chu, Adv. Funct. Mater. 26, 3349 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Lu, Q. Zhao, N. Zhang, K. Lei, F. Li, J. Chen, Adv. Funct. Mater. 26, 911 (2016)CrossRefGoogle Scholar
  20. 20.
    C. Ding, X. Huang, H. Zhang, W. Zhong, Y. Xia, C. Dai, Y. Qin, J. Zhu, J. Mater. Sci.: Mater. Electron. 29, 6491 (2018)Google Scholar
  21. 21.
    W. Deng, J. Qian, Y. Cao, X. Ai, H. Yang, Small 12, 583 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Ling, S. Cai, D. Xie, W. Shen, X. Hu, Y. Li, S. Hua, Y. Jiang, X. Sun, J. Mater. Sci. 53, 2735 (2018)CrossRefGoogle Scholar
  23. 23.
    Y. Lu, N. Zhang, Q. Zhao, J. Liang, J. Chen, Nanoscale 7, 2770 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, J. Mater. Chem. A 2, 8668 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Zheng, Y. Wang, A. Zhang, T. Zhang, F. Cheng, Z. Tao, J. Chen, J. Power Sources 1, 229 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Migneret, C. Wang, Small 11, 473 (2015)CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, W. Wang, Y. Wang, P. Feng, K. Wang, S. Cheng, K. Jiang, Nano Energy 20, 11 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Biao Guo
    • 1
  • Wenyu Diao
    • 1
  • Tingting Yuan
    • 1
  • Yuan Liu
    • 1
  • Qi Yuan
    • 1
  • Guannan Li
    • 1
  • Jingang Yang
    • 1
    Email author
  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingChina

Personalised recommendations