Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films

  • F. JoudiEmail author
  • W. Chakhari
  • R. Ouertani
  • J. Ben Naceur
  • R. Chtourou


In this work, we highlight the effect of TiO2 seed layer (SL) on the photoelectrochemical performances of CdSe/TiO2 photoanodes (PAs). TiO2 thin films were prepared by spin coating starting from a sol gel solution containing TiO2 nanopowder, then sensitized with electrodeposited CdSe nanoparticles. Structural, optical and photoelectrochemical properties of the CdSe/TiO2 PAs with and without the SL were investigated. Charge accumulation processes and charge transfer characteristics were identified by electrochemical impedance spectroscopy. The introduction of the compact TiO2 SL was found to significantly increase the electron transport. The photocurrent density produced by the CdSe/TiO2/SL PA reached 0.95 mA/cm2, about two times higher than that performed by the CdSe/TiO2 PAs. This enhancement might be attributed to a substantial decrease of the leakage current induced by a better crystallization of TiO2 thin films as well as a higher sensitizing effect of the CdSe nanoparticles.





Seed layer




Fluorine-doped tin oxide


Indium-doped tin oxide


X-ray diffraction


Scanning electron microscope


Linear sweep voltammogram


Short-circuit current density


Photocurrent density–voltage


Open circuit voltage


Fill factor


Energy conversion efficiency




Electrochemical impedance spectroscopy



This work is supported by the Ministry of Higher Education and Scientific Research of Tunisia.


  1. 1.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  2. 2.
    G.S. Han, S. Lee, J.H. Noh, H.S. Chung, J.H. Park, B.S. Swain, J.H. Im, N.G. Park, H.S. Jung, 3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale 6, 6127–6132 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64–73 (2014)CrossRefGoogle Scholar
  4. 4.
    M.Z. Ge, C.Y. Cao, S.H. Li, S.N. Zhang, S. Deng, J.Y. Huang, Q.S. Li, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots. Nanoscale 7, 11552–11560 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Shokhovets, O. Ambacher, G. Gobsch, Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors. Phys. Rev. 76, 125203 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Lv, L. Su, H. Wang, L. Liu, G. Xu, D. Wang, Z. Zheng, Y. Wu, Enhanced visible light photocatalytic activity of TiO2 nanotube arrays modified with CdSe nanoparticles by electrodeposition method. Surf. Coat. Technol. 242, 20–28 (2014)CrossRefGoogle Scholar
  7. 7.
    A.K. Ayal, Z. Zainal, H.-N. Lim, Z.A. Talib, Y.-C. Lim, S.-K. Chang, N. Asma, S. Araa, M. Holi, W.N.M. Amin, Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application. Mater. Sci.: Mater. Electron. 27, 5204–5210 (2016)Google Scholar
  8. 8.
    B. Sun, T. Shi, X. Tan, Z. Liu, Y. Wu, G. Liao, Iridium oxide modified CdSe/CdS/TiO2 nanorods for efficient and stable photoelectrochemical water splitting. Mater. Today 3, 443–448 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Yoshii, Y. Murata, Y. Nakabayashi, T. Ikeda, M. Fujishima, H. Tada, Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation. Colloid Interface Sci. 474, 34–40 (2016)CrossRefGoogle Scholar
  10. 10.
    T.H. Thanh, Q.V. Lam, T.H. Nguyen, T.D. Huynh, Characteristic optics of CdSe QDs, TiO2/CdSe, TiO2/MPA/CdSe films and application in solar cells. In Journal of Engineering Technology and Education (GTSD2012), Ho Chi Minh City, 2012Google Scholar
  11. 11.
    B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991)CrossRefGoogle Scholar
  12. 12.
    J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, H. Xia, Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer. J. Alloys Compd. 551, 82–87 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Jyoti, D. Mohan, Growth and performance of TiO2 nanotubes on anatase blocking layer in dye-sensitized solar cells. Prog. Nanotechnol. Nanomater. 3, 57–63 (2014)Google Scholar
  14. 14.
    L. Kavan, N. Tétreault, T. Moehl, M. GraÌ´tzel, Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 118, 16408–16418 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Sivakumar, J. Ramkumar, S. Shaji, M. Paulraj, Efficient TiO2 blocking layer for TiO2 nanorod arrays based dye sensitized solar cells. Thin Solid Films 720, 012036 (2016)Google Scholar
  16. 16.
    J. Ben Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by solgel technique. Curr. Appl. Phys. 12, 422–428 (2012)CrossRefGoogle Scholar
  17. 17.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)CrossRefGoogle Scholar
  18. 18.
    A. Lamouchi, B. Slimi, I. Ben Assaker, M. Gannouni, R. Chtourou, Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications. Eur. Phys. J. Plus 131, 201 (2016)CrossRefGoogle Scholar
  19. 19.
    P. Wang, D. Li, J. Chen, X. Zhang, J. Xian, X. Yang, X. Zheng, X. Li, Y. Shao, A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. Appl. Catal. B 160–161, 217–226 (2014)CrossRefGoogle Scholar
  20. 20.
    W.J. Tseng, S.-M. Kao, Effect of seed particles on crystallization and crystallite size of anatase TiO2 nanocrystals by solvothermal treatment. Adv. Powder Technol. 26, 1225–1229 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, D.D. Dionysiou, Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal A 244, 73–82 (2006)CrossRefGoogle Scholar
  22. 22.
    L.-C. Pop, L. Sygellou, V. Dracopoulos, K.-S. Andrikopoulos, S. Sfaelou, P. Lianos, One-step electrodeposition of CdSe on nanoparticulate titania films and their use as sensitized photoanodes for photoelectrochemical hydrogen production. Catal. Today 252, 157–161 (2014)CrossRefGoogle Scholar
  23. 23.
    I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19, 5089–5121 (2009)CrossRefGoogle Scholar
  25. 25.
    C.-S. Lim, M.-L. Chen, W.-C. Oh, Synthesis of CdSe-TiO2 photocatalyst and their enhanced photocatalytic activities under UV and visible light. Bull. Korean Chem. Soc. 32, 1657 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, H. Xi, Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer. J. Alloys Compd. 551, 82–87 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, H. Sun, X. Tao, X. Zhou, TiO2@CdSe/CdS core–shell hollow nanospheres solar paint. RSC Adv. 4, 31313 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Guang-Lei, H. Hong-Bo, S. Jian-Da, Effect of microstructure of TiO2 thin films on optical band gap energy. Chin. Phys. Lett. 22, 1787 (2005)CrossRefGoogle Scholar
  29. 29.
    Y.K.K. Supriyono, J. Gunlazuardi, Band gap energy modification of TiO2 photoelectrode by PbS/CdS quantum dot to enhance visible region photocurrent. Int. J. ChemTech Res. 9, 191–198 (2016)Google Scholar
  30. 30.
    W. Chakhari, J. Ben Naceur, S. Ben Taieb, I. Ben Assaker, R. Chtourou, Fe doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J. Alloys Compd. 708, 862–870 (2017)CrossRefGoogle Scholar
  31. 31.
    S.W. Shin, J.Y. Lee, K.-S. Ahn, S.H. Kang, J.H. Kim, Visible light absorbing tio2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting. J. Phys. Chem. 119, 13375–13383 (2015)Google Scholar
  32. 32.
    S. Ito, P. Liska, P. Comte, R. Charvet, P. Pe´chy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, M. Gra¨tzel, Control of dark current in photoelectrochemical (TiO2/I–I3 ) and dye-sensitized solar cells. Chem. Commun. 34, 4351–4353 (2005)CrossRefGoogle Scholar
  33. 33.
    W. Wang, F.; Li, D. Zhang, D.Y.C. Leung, G. Li, Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Appl. Surf. Sci. 362, 490–497 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Yoshii, Y. Murata, Y. Nakabayashi, T. Ikeda, M. Fujishima, H. Tada, Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation. J. Colloid Interface Sc. 474, 34–40 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463 (2012)CrossRefGoogle Scholar
  36. 36.
    B. Parkinson, on the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)CrossRefGoogle Scholar
  37. 37.
    A. Ye, W. Fan, Q. Zhang, W. Deng, Y. Wang, CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol. 2, 969–978 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Jung, M. Kang, Enhanced photo-conversion efficiency of CdSe–ZnS core–shell quantum dots with Au nanoparticles on TiO2 electrodes. J. Mater. Chem. 21, 2694–2700 (2011)CrossRefGoogle Scholar
  39. 39.
    A. Cerda´n-Pasara, D. Esparza, I. Zarazu, M. Rese´ndiz, T. Lo´pez-Luke, E. De la Rosa, R. Fuentes-Ramı´rez, A. Alatorre-Ordaz, A. Martı´nez-Benı´tez, Photovoltaic study of quantum dot-sensitized TiO2/CdS/ZnS solar cell with P3HT or P3OT added. J. Appl. Electrochem. 46, 975–985 (2016)CrossRefGoogle Scholar
  40. 40.
    T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, J. Electrochem. Soc. 152, E68–E73 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. Joudi
    • 1
    • 3
    Email author
  • W. Chakhari
    • 1
    • 3
  • R. Ouertani
    • 2
  • J. Ben Naceur
    • 1
  • R. Chtourou
    • 1
  1. 1.Laboratoire de Nanomatériaux et Systèmes pour les Energies RenouvelablesCentre de Recherches et des Technologies de l’EnergieHammam LifTunisia
  2. 2.Laboratoire de photovoltaiqueCentre de Recherches et des Technologies de l’EnergieHammam LifTunisia
  3. 3.Faculté des sciences de TunisUniversité Tunis-El ManarTunisTunisia

Personalised recommendations