Advertisement

Dielectrical and structural studies of composite matrix BiVO4–CaTiO3 and temperature effects by impedance spectroscopy

  • R. G. M. Oliveira
  • D. B. Freitas
  • G. S. Batista
  • J. E. V. de Morais
  • V. C. Martins
  • M. M. Costa
  • M. A. S. Silva
  • D. X. Gouvêa
  • C. Singh
  • A. S. B. Sombra
Article
  • 76 Downloads

Abstract

In this work, we have analysed the effects of adding CaTiO3 (CTO) and changing the temperature on the dielectric and electric properties of ceramic matrix BiVO4 (BVO) in the radiofrequency range. BVO was synthesized by a calcination process at 500 °C and ceramic composites were prepared by the addition of CTO (8, 16, 24, 28 and 32 wt%). These composites were moulded in ceramic pellets and sintered at 800 °C. The crystal structures of BVO and composites were analysed by X-ray diffraction and no spurious phase was detected in the synthesized BVO. Complex impedance spectroscopy observed the presence of a thermo-activated charge transfer process with activation energy increasing with CTO concentration in the samples. The dielectric constant (ε) measured in radio frequency for ceramic composites presented high values that ranged from 26 to 9 k for BVO to BV32, respectively, at room temperature and a frequency of 1 Hz. The electrical response obtained by composites were fitted through an equivalent circuit composed of three associations in parallel with the resistance of a constant phase element, which showed minor deviations between the fitted and experimental data. The temperature coefficient of capacitance displayed negative and positive values in CTO-based composites and pure BVO, respectively; these characteristics are favourable for the application of composites in the radio frequency band.

Notes

Acknowledgements

The authors are grateful to CNPq (402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127) and CNPq (Process: 402561/2007-4, Edital MCT/CNPq nº 10/2007) for providing financial support.

References

  1. 1.
    C. Martinez Suarez, S. Hernández, N. Russo, Appl. Catal. A 504, 158 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Pookmanee, S. Kojinok, S. Phanichphant, J. Met. Mater. Miner. 22, 49 (2012)Google Scholar
  3. 3.
    D. Zhou, L.-X. Pang, J. Guo, Z.-M. Qi, T. Shao, Q.-P. Wang, H.-D. Xie, X. Yao, C.A. Randall, Inorg. Chem. 53, 1048 (2014)CrossRefGoogle Scholar
  4. 4.
    B. Zhou, J. Qu, X. Zhao, H. Liu, J. Environ. Sci. 23, 151 (2011)CrossRefGoogle Scholar
  5. 5.
    I. Vinke, J. Diepgrond, B. Boukamp, K. Devries, A. Burggraaf, Solid State Ionics 57, 83 (1992)CrossRefGoogle Scholar
  6. 6.
    X. Lin, L. Yu, L. Yan, H. Li, Y. Yan, C. Liu, H. Zhai, Solid State Sci. 32, 61 (2014)CrossRefGoogle Scholar
  7. 7.
    D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, P.B.A. Fechine, RSC Adv. 6, 42502 (2016)CrossRefGoogle Scholar
  8. 8.
    M.I.M.T. Abdullah, A. Halim, N.M. Ali, Malays. J. Anal. Sci. 13, 151 (2009)Google Scholar
  9. 9.
    S. Sarkar, K.K. Chattopadhyay, Physica E 44, 1742 (2012)CrossRefGoogle Scholar
  10. 10.
    S.-H. Wee, D.-W. Kim, S.-I. Yoo, J. Am. Ceram. Soc. 87, 871 (2004)CrossRefGoogle Scholar
  11. 11.
    D. Zhou, C.A. Randall, H. Wang, L.-X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 2147 (2010)CrossRefGoogle Scholar
  12. 12.
    R.G.M. Oliveira, J.W.O. Bezerra, J.E.V. de Morais, M.A.S. Silva, J.C. Goes, M.M. Costa, A.S.B. Sombra, Mater. Lett. 205, 67 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Hoffart, U. Heider, R.A. Huggins, W. Witschel, R. Jooss, A. Lentz, Ionics 2, 34 (1996)CrossRefGoogle Scholar
  14. 14.
    F. Gu, G. Chen, X. Kang, X. Li, C. Zhou, C. Yuan, Y. Yang, T. Yang, J. Mater. Sci. 50, 1295 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Zhou, L.-X. Pang, H. Wang, J. Guo, X. Yao, C.A. Randall, J. Mater. Chem. 21, 18412 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Zhou, L.-X. Pang, J. Guo, H. Wang, X. Yao, C. Randall, Inorg. Chem. 50, 12733 (2011)CrossRefGoogle Scholar
  17. 17.
    G.H. Chen, F.F. Gu, M. Pan, L.Q. Yao, M. Li, X. Chen, Y. Yang, T. Yang, C.L. Yuan, C.R. Zhou, J. Mater. Sci. 26, 6511 (2015)Google Scholar
  18. 18.
    Y.J. Wong, J. Hassan, M. Hashim, J. Alloys Compd. 571, 138 (2013)CrossRefGoogle Scholar
  19. 19.
    B. Ghosh, A. Dutta, T.P. Sinha, J. Alloys Compd. 554, 80 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Hollins, Spectrochim. Acta A Mol. Spectrosc. 44, 853 (1988)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, T. Tong, W. Kinsman, P. Jiang, G. Yin, S. Li, J. Alloys Compd. 549, 358 (2013)CrossRefGoogle Scholar
  22. 22.
    R.N. Bhowmik, I. Panneer Muthuselvam, J. Magn. Magn. Mater. 335, 64 (2013)CrossRefGoogle Scholar
  23. 23.
    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)CrossRefGoogle Scholar
  24. 24.
    L. Bleicher, J.M. Sasaki, C.O. Paiva Santos, J. Appl. Crystallogr. 33, 1189 (2000)CrossRefGoogle Scholar
  25. 25.
    A. El Yacoubi, A. Massit, S. El Moutaoikel, A. Rezzouk, B.C. El Idrissi, Am. J. Mater. Sci. Eng. 5, 1 (2017)Google Scholar
  26. 26.
    R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366 (1995)CrossRefGoogle Scholar
  27. 27.
    J.R. MacDonald, Appl. Opt. 28, 1083 (1989)CrossRefGoogle Scholar
  28. 28.
    R.G.M. Oliveira, M.C. Romeu, M.M. Costa, P.M. Silva, J.M.S. Filho, C.C.M. Junqueira, A.S.B. Sombra, J. Alloys Compd. 584, 295 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Lily, K. Kumari, Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)CrossRefGoogle Scholar
  31. 31.
    C. León, M.L. Lucía, J. Santamaría, Phys. Rev. B 55, 882 (1997)CrossRefGoogle Scholar
  32. 32.
    R. Richert, Solid State Ionics 105, 167 (1998)CrossRefGoogle Scholar
  33. 33.
    M.H. Harun, E. Saion, A. Kassim, E. Mahmud, M.Y. Hussain, I.S. Mustafa, J. Adv. Sci. Arts 1, 9 (2009)Google Scholar
  34. 34.
    I.I. Popov, R.R. Nigmatullin, A.A. Khamzin, I.V. Lounev, J. Phys. Conf. Ser. 394, 012026 (2012)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, J. Phys. D 32, R57 (1999)CrossRefGoogle Scholar
  36. 36.
    A.K. Jonscher, J. Mater. Sci. 13, 553 (1978)CrossRefGoogle Scholar
  37. 37.
    T. Lu, Solid State Ionics 21, 339 (1986)CrossRefGoogle Scholar
  38. 38.
    A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, J. Mol. Catal. A Chem. 304, 28 (2009)CrossRefGoogle Scholar
  39. 39.
    M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graça, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Ram, Appl. Phys. A 99, 437 (2010)CrossRefGoogle Scholar
  41. 41.
    Z.-L. Hou, M.-S. Cao, J. Yuan, X.-Y. Fang, X.-L. Shi, J. Appl. Phys. 105, 076103 (2009)CrossRefGoogle Scholar
  42. 42.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon N. Y. 48, 788 (2010)CrossRefGoogle Scholar
  43. 43.
    M.-S. Cao, Z.-L. Hou, J. Yuan, L.-T. Xiong, X.-L. Shi, J. Appl. Phys. 105, 106102 (2009)CrossRefGoogle Scholar
  44. 44.
    B. Lee, I. Abothu, P. Raj, C. Yoon, R. Tummala, Scr. Mater. 54, 1231 (2006)CrossRefGoogle Scholar
  45. 45.
    K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, O. Yamaguchi, Mater. Res. Bull. 27, 823 (1992)CrossRefGoogle Scholar
  46. 46.
    X.-Z. Yuan, C. Song, W. Haijiang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells. Fundamentals and Applications (Springer, New York, 2010)CrossRefGoogle Scholar
  47. 47.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)CrossRefGoogle Scholar
  48. 48.
    J.R. MacDonald, Impedance Spectroscopy (Springer, New York, 1987)Google Scholar
  49. 49.
    H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23 (2007)CrossRefGoogle Scholar
  50. 50.
    K.S. Cole, J. Chem. Phys. 10, 98 (1942)CrossRefGoogle Scholar
  51. 51.
    A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Telecommunication Engineering DepartmentFederal University of Ceará (UFC)FortalezaBrazil
  2. 2.LOCEM-Telecommunication and Materials Science and Engineering of Laboratory (LOCEM), Physics DepartmentFederal University of Ceará (UFC)FortalezaBrazil
  3. 3.Institute of PhysicsLACANM, UFMTCuiabáBrazil
  4. 4.Federal Institute of CearáFortalezaBrazil
  5. 5.Chemistry DepartmentFederal University of Ceará (UFC)FortalezaBrazil
  6. 6.Lovely Professional UniversityJalandharIndia
  7. 7.Laboratory of Communication and Security Networks (LARCES)State University of CearáFortalezaBrazil

Personalised recommendations