Effect of hydration on microstructure and property of anodized oxide film for aluminum electrolytic capacitor

  • Chao-Lei BanEmail author
  • Fang-Ren Wang
  • Jian-Hai Chen
  • Zhen-Qi Liu


Etched aluminum foil for aluminum electrolytic capacitor was first boiled in water for different time to form hydrous film on Al foil and then anodized in H3BO4 solution at 530 V to form anodic oxide barrier film as insulating dielectric layer. The obtained films were characterized by field-emission scanning electron microscopy, transmission electron microscope and X-ray diffraction for surface morphology, microstructure and crystallinity examination. Small-current charging, LCR meter and electrochemical impedance spectroscopy were exploited to measure the propertied of the anodized oxide film such as withstanding voltage (Uw), specific resistance (Rox) and specific capacitance (Cs and Cox) for its electrochemical performance. The results show that the hydrous film is pseudoboehmite (PB) with a dense inner layer and a fibrous outer layer. The crystallinity of the PB film increases with hydration time. During anodization, the PB film was transformed into anodic oxide (γ′-Al2O3) barrier film. Prolonging hydration time promotes transformating PB into γ′-Al2O3 and improves the crystallinity of the barrier film, leading to increase in Cs and Cox and decrease in Rox and Uw.



The work is financially supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MEM019), Technology and Culture Innovation Fund for Student of Liaocheng Univerisy (Grant No. 26312171923) and Innovative Entrepreneurship training Program for College students of Liaocheng Univerisy (Grant No. 201710447009).


  1. 1.
    Z.S. Feng, J.J. Chen, C. Zhang, N. Zhao, Z. Liang, Ceram. Int. 38, 2501 (2012)CrossRefGoogle Scholar
  2. 2.
    Z.H. Hou, J.H. Zeng, J.J. Chen, S.J. Liao, Mater. Chem. Phys. 123, 625 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Watanabe, M. Sakairi, H. Takahashi, S. Hirai, S. Yamaguchi, J. Electroanal. Chem. 473, 250 (1999)CrossRefGoogle Scholar
  4. 4.
    C.L. Ban, S.Q. Zhu, J.L. Hou, F.R. Wang, J. Wang, Z.F. Jia, J.S. Zhao, J. Mater. Sci. Mater. Electron. 28, 10992 (2017)CrossRefGoogle Scholar
  5. 5.
    J.K. Chang, C.M. Liao, C.H. Chen, W.T. Tsai, J. Power Sources 138, 301 (2004)CrossRefGoogle Scholar
  6. 6.
    K. Watanabe, M. Sakairi, H. Takahashi, K. Takahiro, S. Nagata, S. Hirai, J. Electrochem. Soc. 148, 473 (2001)CrossRefGoogle Scholar
  7. 7.
    C.L. Ban, S.Q. Zhu, J.L. Hou, F.R. Wang, J. Wang, J. Mater. Sci. Mater. Electron. 28, 6860 (2017)CrossRefGoogle Scholar
  8. 8.
    G.A. Hutchins, C.T. Chen, J. Electrochem. Soc. 133, 1332 (1986)CrossRefGoogle Scholar
  9. 9.
    P.G. Anderson, O.F. Devereux, J. Electrochem. Soc. 122, 267 (1975)CrossRefGoogle Scholar
  10. 10.
    T.A. Libsch, O.F. Devereux, J. Electrochem. Soc. 122, 1654 (1975)CrossRefGoogle Scholar
  11. 11.
    J.K. Chang, C.M. Lin, C.M. Liao, C.H. Chen, W.T. Tsai, J. Electrochem. Soc. 151, 188 (2004)CrossRefGoogle Scholar
  12. 12.
    C.L. Ban, Y.D. He, X. Shao, J. Du, Trans. Nonferrous Met. Soc. 23, 1039 (2013)CrossRefGoogle Scholar
  13. 13.
    C.L. Ban, Y.D. He, X. Shao, J. Mater. Sci. Mater. Electron. 24, 3442 (2013)CrossRefGoogle Scholar
  14. 14.
    H.J. Oh, J.H. Lee, H.J. Ahn, Y.S. Jeong, C.H. Heo, C.S. Chi, J. Electroceram. 17, 369 (2006)CrossRefGoogle Scholar
  15. 15.
    J.H. Lee, K.W. Jang, H.J. Oh, Mater. Sci. Eng. A 449–451, 314 (2007)Google Scholar
  16. 16.
    H. Uchi, T. Kanno, R.S. Alwitt, J. Electrochem. Soc. 148, 17 (2001)CrossRefGoogle Scholar
  17. 17.
    A.C. Geiculescu, T.F. Strange, Thin Solid Films 426, 160 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations