Advertisement

Study of microstructure and magneto-transport properties in Bi1.6Pb0.4Sr2Ca3GdxCu4Oδ superconducting systems

  • H. Ağıl
Article
  • 71 Downloads

Abstract

The role of Gd addition in the Bi1.6Pb0.4Sr2Ca3GdxCu4Oy (x = 0.0, 0.1, 0.2, 0.3 and 0.4) system was examined by X-ray powder diffraction, scanning electron microscopy, critical current density (Jc) and magneto-transport measurements. The samples were fabricated by the conventional solid state reaction method. The analysis showed that the critical temperature (Tc) and hole number (p) of the materials decreased while the room temperature resistances increased with the addition of Gd. The resistance–temperature dependence for the low-resistance regions of the transition can be determined by the thermally activated flux flow model. The upper critical field [Hc2(T)] values calculated by using this model decreased with the addition of Gd. Furthermore, it was observed that the activation energy (U0) decreased both with the increase in the amount of Gd and applied magnetic field. The degradation of the superconducting properties of the samples may be related to the alteration of the structural, electronic and magnetic properties of the materials depending on the presence of the Gd ions. As a result, the decrease in the number of holes and the magnetic properties of Gd ions are thought to be the fundamental reasons for the deterioration of the superconducting properties of the materials. It has been observed that Gd additions from the microstructure studies of the materials affected the surface morphology negatively.

Notes

Acknowledgements

This work was supported by the Research Fund of Hakkari University, Hakkari, Turkey, under Grant Contract No: FM2017BAP5.

References

  1. 1.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)CrossRefGoogle Scholar
  2. 2.
    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, 209 (1988)CrossRefGoogle Scholar
  3. 3.
    S.A. Sunshine, T. Siegrist, L.F. Schneemeyer, D.W. Murphy, R.J. Cava, B. Batlogg, R.B. Van Dover, R.M. Fleming, S.H. Glarum, S. Nakahara, R. Farrow, J.J. Krajevski, S.M. Zahurak, J.V. Waszczak, J.H. Marshall, P. Marsh, L.W. Rupp, W.F. Peck, Phys. Rev. B 38, 893 (1988)CrossRefGoogle Scholar
  4. 4.
    S.M. Green, C. Jiang, Y. Mei, H.L. Luo, C. Politis, Phys. Rev. B 38, 5016–5019 (1988)CrossRefGoogle Scholar
  5. 5.
    E. Chavira, R. Escudero, D. Rios-Jara, L.M. Leon, Phys. Rev. B 38, 9272–9275 (1988)CrossRefGoogle Scholar
  6. 6.
    N. Hudakova, V. Plechacek, P. Dordor, K. Flachbart, K. Knizek, J. Kovac, M. Reiffers, Supercond. Sci. Technol. 8, 324–328 (1995)CrossRefGoogle Scholar
  7. 7.
    L. Yanrong, B. Yang, J. Mater. Sci. Lett. 13, 594–596 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Muralidhar, D. Mangapathi Rao, T. Somaiah, V. Hari Babu, Cryst. Res. Technol. 561, 561–565 (2006)Google Scholar
  9. 9.
    M.N. Khan, A. Memon, S. Al-Dallal, M. Al-Othman, M. Zein, W. Alnaser, Mod. Phys. Lett. B 7, 1687 (1993)CrossRefGoogle Scholar
  10. 10.
    W. Alnaser, M. Zein, M.N. Khan, S. AI-Dallal, A. Memon, M.J. AI-Othman, Supercond. Sci. Technol. 6, 429–436 (1993)CrossRefGoogle Scholar
  11. 11.
    M.N. Khan, A.U. Haq, J. Mater. Eng. Perform. 5, 446–451 (1996)CrossRefGoogle Scholar
  12. 12.
    M.N. Khan, A.N. Kayani, A.U. Haq, J. Mater. Sci. 33, 2365–2369 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Daumling, R. Maad, A. Jeremie, R. Flukiger, J. Mater. Res. 12, 1445–1450 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Muralidhar, K. Nanda Kishore, V. Hari Babu, Mater. Chem. Phys. 33, 117–123 (1993)CrossRefGoogle Scholar
  15. 15.
    B. Liang, C. Bernhard, T. Wolf, C.T. Lin, Supercond. Sci. Technol. 17, 731–738 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Yoo, C. Jiang, J. Ko, Y. Kim, H. Kim, H. Chung, Evolution (N. Y). 13, 3014–3017 (2003)Google Scholar
  17. 17.
    I.H. Gul, M.A. Rehman, M. Ali, A. Maqsood, Phys. C Supercond. Appl. 432, 71–80 (2005)CrossRefGoogle Scholar
  18. 18.
    D. Yegen, C. Terzioglu, Chin. J. Phys. 44, 233–240 (2006)Google Scholar
  19. 19.
    C. Terzioglu, O. Oztürk, A. Kiliç, A. Gencer, I. Belenli, Phys. C Supercond. Appl. 434, 153–156 (2006)CrossRefGoogle Scholar
  20. 20.
    H. Gündoğmuş, J. Mater. Sci.: Mater. Electron. 28, 12598–12605 (2017)Google Scholar
  21. 21.
    Y. Himeda, M. Kiuchi, E.S. Otabe, T. Matsushita, J. Fujikami, K. Hayashi, K. Sato, Phys. C. 445–448, 722–725 (2006)CrossRefGoogle Scholar
  22. 22.
    F. Karaboğa, A.T. Ulgen, H. Yetiş, M. Akdoğan, M. Pakdil, I. Belenli, Mater. Sci. Eng. A. 721, 89–95 (2018)CrossRefGoogle Scholar
  23. 23.
    O. Erdem, M. Abdioglu, S.B. Guner, S. Celik, T. Kucukomeroglu, J. Alloys Compds. 727, 1213–1220 (2017)CrossRefGoogle Scholar
  24. 24.
    A.T. Ulgen, J. Baun, Inst. Sci. Technol. 19, 121–128 (2017)Google Scholar
  25. 25.
    S.B. Guner, S. Celik, A. Cansız, K. Ozturk, J. Supercond. Nov. Magn. 30, 1335–1343 (2017)CrossRefGoogle Scholar
  26. 26.
    C.P. Bean, Rev. Mod. Phys. 36, 31–39 (1964)CrossRefGoogle Scholar
  27. 27.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Phys. C. 176, 95–105 (1991)CrossRefGoogle Scholar
  28. 28.
    C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Phys. C. 423, 119–126 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Simon, G. Ilonca, I. Barbur, I. Ardelean, R. Redac, Phys. C Supercond. Appl. 162–164, 1289–1290 (1989)CrossRefGoogle Scholar
  30. 30.
    K. Nanda Kishore, S. Satyavathi, M. Muralidhar, V. Hari Babu, O. Pena, M. Sergent, F. Beniere, Phys. Status Solidi 143, 101–108 (1994)CrossRefGoogle Scholar
  31. 31.
    R.P. Aloysius, P. Guruswamy, U. Syamaprasad, Phys. C Supercond. Appl. 426–431, 556–562 (2005)CrossRefGoogle Scholar
  32. 32.
    J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026–1031 (2007)CrossRefGoogle Scholar
  33. 33.
    H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486–S489 (2004)CrossRefGoogle Scholar
  34. 34.
    A. Coşkun, A. Ekicibil, B. Özçelik, K. Kıymaç, Chin. J. Phys. 21, 2041–2044 (2004)Google Scholar
  35. 35.
    B. Chevalier, B. Lepine, A. Le Lirzin, J. Darriet, J. Etourneau, Mater. Sci. Eng. B 2, 277–280 (1989)CrossRefGoogle Scholar
  36. 36.
    R.C. Budhani, D.O. Welch, M. Suenaga, R.L. Sabatini, Phys. Rev. Lett. 64, 1666–1669 (1990)CrossRefGoogle Scholar
  37. 37.
    B. Jayaram, P.C. Lanchester, M.T. Weller, Phys. C Supercond. Appl. 160, 17–24 (1989)CrossRefGoogle Scholar
  38. 38.
    C.S. Yadav, P.L. Paulose, New J. Phys. 11, 0–10 (2009)CrossRefGoogle Scholar
  39. 39.
    G.L. Bhalla, A. Pratima, K.K. Malik, Singh, Phys. C Supercond. Appl. 391, 17–24 (2003)CrossRefGoogle Scholar
  40. 40.
    G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Phys. C Supercond. Appl. 160, 333–340 (1989)CrossRefGoogle Scholar
  41. 41.
    M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421–2424 (1989)CrossRefGoogle Scholar
  42. 42.
    H.K. Liu, Y.C. Guo, S.X. Dou, S.M. Cassidy, L.F. Cohen, G.K. Perkins, A.D. Caplin, N. Savvides, Phys. C Supercond. Appl. 213, 95–102 (1993)CrossRefGoogle Scholar
  43. 43.
    I. Kušević, E. Babić, Z. Marohnić, J. Ivkov, S.X. Dou, Phys. C Supercond. Appl. 235–240, 3035–3036 (1994)CrossRefGoogle Scholar
  44. 44.
    B. Özkurt, B. Özçelik, J. Low Temp. Phys. 156, 22–29 (2009)CrossRefGoogle Scholar
  45. 45.
    N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104–112 (1996)CrossRefGoogle Scholar
  46. 46.
    M.H. Pu, W.H. Song, B. Zhao, X.C. Wu, Y.P. Sun, J.J. Du, J. Fang, Phys. C Supercond. Appl. 361, 181–188 (2001)CrossRefGoogle Scholar
  47. 47.
    Z.H. Wang, H. Zhang, Phys. C Supercond. Appl. 320, 218–224 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Material Science and Engineering, Faculty of EngineeringHakkari UniversityHakkariTurkey

Personalised recommendations