Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15894–15901 | Cite as

Near-ultraviolet excited Eu3+ doped KSrY(BO3)2 phosphors for solid-state lighting: synthesis, structure and photoluminescent properties

  • Yongsheng Shi
  • Zan WangEmail author
  • Qingju Ning
  • Dan Wu
  • Bo Quan


A series of KSrY(BO3)2: Eu3+ phosphors have been prepared by the conventional solid-state reaction method for the first time and characterized using X-ray diffraction, UV–Vis absorbance, as well as Photoluminescence techniques. The XRD results indicated that all prepared samples could be attributable to the monoclinic structure in space group P21/m. The combination of first-principles calculations with UV–Vis absorption spectra confirmed the direct band gap characteristic of the phosphors. Upon 394 nm excitation, the 5D07F1 transition of the emission spectra dominated when the Eu3+ ions concentration was low, but the 5D07F2 transition rapidly increased and dominated with the doping concentration increasing. When the concentration of Eu3+ ions was 40%, the phosphors has the best luminescence and its CIE chromaticity coordinates were located at (0.6399, 0.3584), the color purity was as high as 99.9%. In addition, correlated color temperature, decay properties and Judd–Ofelt (J–O) theory were discussed in detail.



This work is financially supported by the Program for Tackling Key Problems of Science and Technology Department of Shaanxi province (2015GY173).


  1. 1.
    M. Beltaif, M. Dammak, M. Megdiche, K. Guidara, J. Lumin. 177, 373 (2016)CrossRefGoogle Scholar
  2. 2.
    S.C. Xu, P.L. Li, Z.J. Wang, T. Li, Q.Y. Bai, J. Sun, Z.P. Yang, J. Mater. Sci. 52, 2021 (2017)CrossRefGoogle Scholar
  3. 3.
    S.Y. Xin, S.H. Yuan, C. Wang, Z.W. Li, F.G. Zhou, G. Zhu, J. Mater. Sci. 29, 4632 (2018)Google Scholar
  4. 4.
    L. Li, W.X. Chang, W.Y. Chen, Z.S. Feng, C.L. Zhao, P.F. Jiang, Y.J. Wang, X.J. Zhou, A. Suchocki, Ceram. Int. 43, 2720 (2017)CrossRefGoogle Scholar
  5. 5.
    D. Kang, H.S. Yoo, S.H. Jung, H. Kim, D.Y. Jeon, J. Phys. Chem. C 115, 24334 (2011)CrossRefGoogle Scholar
  6. 6.
    A.R. Sharits, J.F. Khoury, P.M. Woodward, Inorg. Chem. 55, 12383 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Jayakiruba, S.S. Chandrasekaran, P. Murugan, N. Lakshminarasimhan, Phys. Chem. Chem. Phys. 19, 17383 (2017)CrossRefGoogle Scholar
  8. 8.
    Y.J. Liang, H.M. Noh, W.G. Ran, S.H. Park, B.C. Choi, J.H. Jeong, K.H. Kim, J. Alloy. Compd. 716, 56 (2017)CrossRefGoogle Scholar
  9. 9.
    X.B. Li, Q. Liu, W.T. Huang, S.H. Chen, L.X. Wang, M.X. Yu, Q.T. Zhang, Ceram. Int. 44, 1909 (2018)CrossRefGoogle Scholar
  10. 10.
    Q.X. Tang, K.H. Qiu, J.F. Li, W.T. Zhang, Y. Zeng, J. Mater. Sci. 28, 18686 (2017)Google Scholar
  11. 11.
    D. Zhao, F.X. Ma, Y.C. Fan, L. Zhang, R.J. Zhang, P.G. Duan, Dalton Trans. 46, 8673 (2017)CrossRefGoogle Scholar
  12. 12.
    H.D. Xie, F. Li, H.H. Xi, R. Tian, X.C. Wang, J. Mater. Sci. 26, 23 (2015)CrossRefGoogle Scholar
  13. 13.
    X.Y. Wu, Y.J. Liang, M.F. Zhang, M.H. Tong, D.Y. Yu, Y.L. Zhu, S.Q. Liu, C.J. Yan, J. Mater. Sci. 26, 7324 (2015)Google Scholar
  14. 14.
    Q.H. Zhang, H.Y. Ni, L.L. Wang, F.M. Xiao, Ceram. Int. 42, 6115 (2016)CrossRefGoogle Scholar
  15. 15.
    W.Q. Luo, D.T. Tu, R.F. Li, X.Q. Mao, Y.M. Xu, J.Z. Ren, B. Li, H.Y. Wu, J. Mater. Sci. 52, 9764 (2017)CrossRefGoogle Scholar
  16. 16.
    A.B. Gawande, R.P. Sonekar, S.K. Omanwar, Mater. Res. Bull. 60, 285 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Xu, C.C. Shi, Y.J. Liang, S.Q. Liu, Y.L. Zhu, X.Y. Wu, K. Li, S.J. Wang, J. Mater. Sci. 28, 1402 (2017)Google Scholar
  18. 18.
    A.E. Kokh, N.G. Kononova, V.S. Shevchenko, Yu.V. Seryotkin, A.K. Bolatov, Kh.A. Abdullin, B.M. Uralbekov, M. Burkitbayev, J. Alloy. Compd. 711, 440 (2017)CrossRefGoogle Scholar
  19. 19.
    L. Li, Y. Pan, W.J. Wang, W.Y. Zhang, Z.H. Wen, X.X. Leng, Q. Wang, L.Q. Zhou, H.B. Xu, Q.H. Xia, L. Liu, H.P. Xiang, X.G. Liu, J. Alloy. Compd. 726, 121 (2017)CrossRefGoogle Scholar
  20. 20.
    K. Li, H.Z. Lian, M.M. Shang, J. Lin, Dalton Trans. 44, 20542 (2015)CrossRefGoogle Scholar
  21. 21.
    X.Y. Huang, H. Guo, B. Li, J. Alloy. Compd. 720, 29 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)CrossRefGoogle Scholar
  23. 23.
    S.Y. Cao, Q.J. Ning, C.L. Yu, C.J. Qiao, Y.S. Shi, R.C. Liu, J. Alloy. Compd. 691, 323 (2017)CrossRefGoogle Scholar
  24. 24.
    X.Y. Huang, B. Li, H. Guo, Ceram. Int. 43, 10566 (2017)CrossRefGoogle Scholar
  25. 25.
    X.J. Li, X.P. Li, X. Wang, L.L. Tong, L.H. Cheng, J.S. Sun, J.S. Zhang, S. Xu, B.J. Chen, J. Mater. Sci. 52, 935 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Li, X.H. Tang, Z.Q. Jiang, X.J. Zhou, S. Jiang, X.B. Luo, G.T. Xiang, K.N. Zhou, J. Alloy. Compd. 701, 515 (2017)CrossRefGoogle Scholar
  27. 27.
    R.P. Cao, Z.H. Shi, G.J. Quan, T. Chen, S.L. Guo, Z.F. Hua, P. Liu, J. Lumin. 188, 577 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Bouzidi, M. Ferhi, H. Elhouichet, M. Ferid, J. Lumin. 179, 230 (2016)CrossRefGoogle Scholar
  29. 29.
    R.S. Saraf, N. Dhananjaya, S. Behera, J. Mater. Sci. 50, 287 (2015)CrossRefGoogle Scholar
  30. 30.
    S.H. Lee, P. Du, L.K. Bharat, J.S. Yu, Ceram. Int. 43, 4599 (2017)CrossRefGoogle Scholar
  31. 31.
    G. Ramakrishna, H. Nagabhushana, B.D. Prasad, Y.S. Vidya, S.C. Sharma, K.S. Anantharaju, S.C. Prashantha, N. Choudhary, J. Lumin. 181, 153 (2017)CrossRefGoogle Scholar
  32. 32.
    Y.S. Shi, J.J. Shi, C. Dong, Ceram. Int. 43, 16356 (2017)CrossRefGoogle Scholar
  33. 33.
    Y.S. Shi, C. Dong, J.J. Shi, Mater. Sci. Eng. B 228, 28 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Elecrical and Information EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations