Skip to main content
Log in

Influence of Gd3+-substitution on structural, magnetic, dielectric and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The gadolinium (Gd3+) substituted zinc ferrite nanoparticles (ZnFe2−xGdxO4) for Gd3+ (x = 0.00, 0.05, 0.10, 0.20) have been synthesized by honey mediated sol–gel auto-combustion method. The X-ray diffraction study revealed the formation of spinel ferrite crystal structure. The Raman spectroscopy and Fourier transform infrared spectroscopy study well support the XRD results analysis. The field emission scanning electron microscopy micrograph revealed spherical morphology and grain size around 10–30 nm for ZnFe2−xGdxO4 (x = 0.10) nanoparticles. The presence of Zn2+ and Fe3+ oxidation state in synthesized nanoparticles was confirmed by X-ray photoelectron spectroscopy. Magnetic properties of the Gd3+ substituted zinc ferrite nanoparticles were investigated by vibrating sample magnetometer at room temperature. The conversion of magnetic hysteresis curves from ferromagnetic to a paramagnetic with the substitution of Gd3+ in zinc ferrite nanoparticles was observed. Frequency dependent dielectric constant and ac conductivity measurements revealed that Gd3+ substitution improved the value of dielectric constant and ac conductivity of the Gd3+ substituted zinc ferrite nanoparticles. Further, the existence of two semicircles in Cole–Cole plot demonstrated the role of both grains and grain boundaries to conduction process in synthesized Gd3+ ion substituted zinc ferrite nanoparticles. Furthermore, the grain relaxation time (τg), grain boundary relaxation time (τgb), grain resistance (Rg), grain capacitance (Cg), grain boundary resistance (Rgb) and grain boundary capacitance (Cgb) for synthesized ZnFe2−xGdxO4 (x = 0.00, 0.05, 0.10, 0.20) nanoparticles have been calculated using modulus spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. S.M. Ansari, R.D. Bhor, K.R. Pai, S. Mazumder, D. Sen, Y.D. Kolekar, C.V. Ramana, Size and chemistry controlled cobalt–ferrite nanoparticles and their anti-proliferative effect against the MCF–7 breast cancer cells. ACS Biomater. Sci. Eng. 2, 2139–2152 (2016)

    Article  Google Scholar 

  2. P.P. Goswami, H.A. Choudhury, S. Chakma, V.S. Moholkar, Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind. Eng. Chem. Res. 52, 17848–17855 (2013)

    Article  Google Scholar 

  3. X. Zeng, J. Zhang, S. Zhu, X. Deng, H. Ma, J. Zhang, Q. Zhang, P. Li, D. Xue, N.J. Mellors, X. Zhang, Y. Peng, Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties. Nanoscale 8, 7493–7500 (2017)

    Article  Google Scholar 

  4. S.G. Kakade, R.C. Kambale, C.V. Ramanna, Y.D. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). RSC Adv. 6, 33308–33317 (2016)

    Article  Google Scholar 

  5. G. Xi, L. Wang, T. Zhao, Magnetic and magnetostrictive properties of RE-doped Cu–Co ferrite fabricated from spent lithium-ion batteries. J. Magn. Magn. Mater. 424, 130–136 (2017)

    Article  Google Scholar 

  6. C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, A. Pui, Rare earth metals’ influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram. Int. 42, 11958–11965 (2016)

    Article  Google Scholar 

  7. L. Chauhan, N. Singh, A. Dhar, H. Kumar, S. Kumar, K. Sreenivas, Structural and electrical properties of Dy3+ substituted NiFe2O4 ceramics prepared from powders derived by combustion method. Ceram. Int. 43, 8378–8390 (2017)

    Article  Google Scholar 

  8. M. Bini, C. Tondo, D. Capsoni, M.C. Mozzati, B. Albini, P. Galinetto, Superparamagnetic ZnFe2O4 nanoparticles: the effect of Ca and Gd doping. Mater. Chem. Phys. 204, 72–82 (2018)

    Article  Google Scholar 

  9. P. Raja, T. Yadavalli, D. Ravi, H.A. Therese, C. Ramasamy, Y. Hayakawa, Synthesis and magnetic properties of gadolinium substituted zinc ferrites. Mater. Lett. 188, 406–408 (2017)

    Article  Google Scholar 

  10. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323, 133–138 (2011)

    Article  Google Scholar 

  11. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  Google Scholar 

  12. P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, Magnetic properties of nanosized Gd –Mn–Cr ferrites prepared using the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 378, 92–97 (2015)

    Article  Google Scholar 

  13. Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V.N. Ivanovski, A. Recnik, B. Cekic, N.Z. Romcevic, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113, 187221 (2013)

    Article  Google Scholar 

  14. J. Borcherding, J. Baltrusaitis, H. Chen, L. Stebounova, C.-M. Wu, G. Rubasinghege, I.A. Mudunkotuwa, J.C. Caraballo, J. Zabner, V.H. Grassian, A.P. Comellas, Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ. Sci. Nano 1(2), 123–132 (2015). https://doi.org/10.1039/C3EN00029J

    Article  Google Scholar 

  15. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, New York, 1956), p. 139

    Google Scholar 

  16. A. Kumar, P.S. Rana, M.S. Yadav, R.P. Pant, Effect of Gd3+ ion distribution on structural and magnetic properties in nano-sized Mn–Zn ferrite particles. Ceram. Int. 41, 1297–1302 (2015)

    Article  Google Scholar 

  17. P. Vanysek, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2001)

    Google Scholar 

  18. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252–263 (2017)

    Article  Google Scholar 

  19. C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernandez-García, A. Guedes, P.B. Tavares, J.-M. Greneche, J.P. Araujo, C. Freire, Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24, 1496–1504 (2012)

    Article  Google Scholar 

  20. C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6, 7959–7970 (2014)

    Article  Google Scholar 

  21. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338 (2015)

    Article  Google Scholar 

  22. S. Kumari, V. Kumar, P. Kumar, M. Kar, L. Kumar, Structural and magnetic properties of nanocrystalline yttrium substituted cobalt ferrite synthesized by the citrate precursor technique. Adv. Powder Technol. 26, 213–223 (2015)

    Article  Google Scholar 

  23. B. Parvatheeswara Rao, B. Dhanalakshmi, S. Ramesh, P.S.V. Subba Rao, Cation distribution of Ni–Zn–Mn ferrite nanoparticles. J. Magn. Magn. Mater. 456, 444–450 (2018)

    Article  Google Scholar 

  24. P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Influence of rare earth (Nd3+) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017)

    Article  Google Scholar 

  25. Z. Yan, J. Luo, Effects of Ce–Zn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloys Compd. 695, 1185–1195 (2017)

    Article  Google Scholar 

  26. V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, K. Praveena, Structural, electrical and magnetic properties of Sc3+ doped Mn–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017)

    Article  Google Scholar 

  27. A. Thakur, P. Kumar, P. Thakur, K. Rana, A. Chevalier, J.-L. Mattei, P. Queffélec, Enhancement of magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the co-precipitation method. Ceram. Int. 42, 10664–10670 (2016)

    Article  Google Scholar 

  28. S.T. Assar, H.F. Abosheiasha, Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples, J. Magn. Magn. Mater. 374, 264–272 (2015)

    Article  Google Scholar 

  29. S. Bhukal, M. Dhiman, S. Bansal, M.K. Tripathi, S. Singhal, Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv. 6, 1360–1375 (2016)

    Article  Google Scholar 

  30. K.R. Babu, K.R. Rao, B.R. Babu, Cu2+-modified physical properties of cobalt-nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017)

    Article  Google Scholar 

  31. S. Torkian, A. Ghasemi, R.S. Razavi, Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1–xFe2O4 ferrites. Ceram. Int. 43, 6987–6995 (2017)

    Article  Google Scholar 

  32. M.A. Amer, T. Meaz, A. Hashhash, S. Attalah, F. Fakhry, Structural phase transformations of as-synthesized Cu-nanoferrites by annealing process. J. Alloys Compd. 649, 712–720 (2015)

    Article  Google Scholar 

  33. H.M. Zaki, H.A. Dawoud, Far-infrared spectra for copper–zinc mixed ferrites. Physica B 405, 4476–4479 (2010)

    Article  Google Scholar 

  34. P. Choudhary, D. Varshney, Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg–Zn chromites. J. Magn. Magn. Mater. 454, 274–288 (2018)

    Article  Google Scholar 

  35. J. Singh, A. Roychoudhury, M. Srivastava, V. Chaudhary, R. Prasanna, D.W. Lee, S.H. Lee, B.D. Malhotra, Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite-chitosan nanocomposite plateform for biomedical application. J. Phys. Chem. 117, 8491–8502 (2013)

    Google Scholar 

  36. D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1-xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J. Mol. Struct. 1006, 447–452 (2011)

    Article  Google Scholar 

  37. Z. Yan, J. Gao, Y. Li, M. Zhang, M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv. 5, 92778–92787 (2015)

    Article  Google Scholar 

  38. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater. Sci. Eng., B 206, 69–78 (2016)

    Article  Google Scholar 

  39. R.N. Bhowmik, A.K. Sinha, Improvement of room temperature electric polarization and ferrimagnetic properties of Co1.25Fe1.75O4 ferrite by heat treatment. J. Magn. Magn. Mater. 421, 120–131 (2017)

    Article  Google Scholar 

  40. L. Wang, X. Lu, C. Han, R. Lu, S. Yang, X. Song, Electrospun hollow cage-like α-Fe2O3 microspheres: synthesis, formation mechanism, and morphology-preserved conversion to Fe nanostructures. CrystEngComm. 16, 10618–10623 (2014)

    Article  Google Scholar 

  41. R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co–Zn ferrites synthesized by sol–gel method. Ceram. Int. 42, 16096–16102 (2016)

    Article  Google Scholar 

  42. J. Zhang, J.-M. Song, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gassensing property for acetone. Sens. Actuators B 221, 55–62 (2015)

    Article  Google Scholar 

  43. X. Guo, H. Zhu, M. Si, C. Jiang, D. Xue, Z. Zhang, Q. Li, ZnFe2O4 nanotubes: microstructure and magnetic properties. J. Phys. Chem. C 118, 30145–30152 (2014)

    Article  Google Scholar 

  44. G.H. Jaffari, A.K. Rumaiz, J.C. .Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111, 093906 (2012)

    Article  Google Scholar 

  45. A. Hao, M. Ismail, S. He, N. Qin, R. Chen, A.M. Rana, D. Bao, Enhanced resistive switching and magnetic properties of Gd-doped NiFe2O4 thin films prepared by chemical solution deposition method. Mater. Sci. Eng. B 229, 86–95 (2018)

    Article  Google Scholar 

  46. M.A. Dar, D. Varshney, Effect of d-block element Co2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017)

    Article  Google Scholar 

  47. Z.Ž. Lazarević, Č Jovalekić, V.N. Ivanovski, A. Rečnik, A. Milutinović, B. Cekić, N. Romčević, Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route. J. Phys. Chem. Solids 75, 869–877 (2014)

    Article  Google Scholar 

  48. S. Ayyappan, S. Philip Raja, C. Venkateswaran, J. Philip, B. Raj, Room temperature ferromagnetism in vacuum annealed ZnFe2O4 nanoparticles. Appl. Phys. Lett. 96, 143106 (2010)

    Article  Google Scholar 

  49. R. Islam, M.A. Hakim, M.O. Rahman, H. Narayan Das, M.A. Mamun, Study of the structural, magnetic and electrical properties of Gd-substituted Mn–Zn mixed ferrites. J. Alloys Compd. 559, 174–180 (2013)

    Article  Google Scholar 

  50. J. Parashar, V.K. Saxena, D. Jyoti, K.B. Bhatnagar, Sharma, Dielectric behaviour of Zn substituted Cu nano-ferrites. J. Magn. Magn. Mater. 394, 105–110 (2015)

    Article  Google Scholar 

  51. C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha, K. Ghosh, Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. J. Appl. Phys. 114, 183907 (2013)

    Article  Google Scholar 

  52. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29–35 (2012)

    Article  Google Scholar 

  53. M. Ahmad, M. Azhar Khan, A. Mahmood, S.-S. Liu, A.H. Chughtai, W.-C. Cheong, B. Akram, G. Nasar, Role of ytterbium on structural and magnetic properties of NiCr0.1Fe1.9O4 co-precipitated ferrites. Ceram. Int. 44, 5433–5439 (2018)

    Article  Google Scholar 

  54. A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater. 329, 59–64 (2013)

    Article  Google Scholar 

  55. D. Varshney, K. Verma, Substitutional effect on structural and dielectric properties of Ni1–xAxFe2O4 (A = Mg, Zn) mixed spinel ferrites. Mater. Chem. Phys. 140, 412–418 (2013)

    Article  Google Scholar 

  56. A. Manzoor, M.A. Khan, M.Y. Khan, M.N. Akhtar, A. Hussain, Tuning magnetic and high frequency dielectric behavior in Li–Zn ferrites by Ho doping. Ceram. Int. 44, 6321–6329 (2018)

    Article  Google Scholar 

  57. R.R. Kanna, N. Lenin, K. Sakthipandi, A.S. Kumar, Structural, optical, dielectric and magnetic studies of gadolinium-added Mn–Cu nanoferrites. J. Magn. Magn. Mater. 453, 78–90 (2018)

    Article  Google Scholar 

  58. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Dielectric properties of mixed Li–Ni–Cd ferrites, Smart Mater. Struct. 15, N36–N39 (2006). https://doi.org/10.1088/0964-1726/15/2/N02

    Article  Google Scholar 

  59. S.A. Saafan, S.T. Assar, Dielectric behavior of nano-structured and bulk LiNiZn ferrite samples, J. Magn. Magn. Mater. 324, 2989–3001 (2012)

    Article  Google Scholar 

  60. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys. 115, 144106 (2014)

    Article  Google Scholar 

  61. S.G. Kakade, Y.-R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). J. Phys. Chem. C 120, 5682–5693 (2016)

    Article  Google Scholar 

  62. A. Manzoor, M.A. Khan, M. Shahid, M.F. Warsi, Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J. Alloy Compd. 710, 547–556 (2017)

    Article  Google Scholar 

  63. M.N. Akhtar, M.A. Khan, M.R. Raza, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, M. Saleem, M.S. Nazir, Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 40, 15821–15829 (2014)

    Article  Google Scholar 

  64. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C 115, 554–560 (2011)

    Article  Google Scholar 

  65. Z. Liu, Z. Peng, C. Lv, X. Fu, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites. Ceram. Int. 43, 1449–1454 (2017)

    Article  Google Scholar 

  66. M.T. Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite, J. Alloy Compd. 617, 547–562 (2014)

    Article  Google Scholar 

  67. M.D. Rahaman, T. Nusrat, R. Maleque, A.K.M. Akther Hossain, Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5–xSrxFe2O4 ferrites, J. Magn. Magn. Mater. 451, 391–406 (2018)

    Article  Google Scholar 

  68. S.F. Mansour, M.A. Abdo, Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites, J. Magn. Magn. Mater. 428, 300–305 (2017)

    Article  Google Scholar 

  69. A.K. Pradhan, T.K. Nath, S. Saha, Impedance spectroscopy and electric modulus behaviour of molybdenum doped cobalt–zinc ferrite. Mater. Res. Express 4, 076107 (2017)

    Article  Google Scholar 

  70. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  71. A. Manzoora, M.A. Khan, M.Y. Khan, M.N. Akhtar, A. Hussain, Tuning magnetic and high frequency dielectric behavior in Li–Zn ferrites by Ho doping. Ceram. Int. 44, 6321–6329 (2018)

    Article  Google Scholar 

  72. M.A. Ali, M.M. Uddin, M.N.I. Khan, F.-U.-Z. Chowdhury, S.M. Haque, Structural, morphological and electrical properties of Sn-substituted Ni–Zn ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 424, 148–154 (2017)

    Article  Google Scholar 

  73. E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J. Alloy Compd. 726, 187–194 (2017)

    Article  Google Scholar 

  74. K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, TiO2 nanoparticles and silicon nanowires hybrid device: role of interface on electrical, dielectric, and photodetection properties. Appl. Phys. Lett. 101, 253104 (2012)

    Article  Google Scholar 

  75. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989)

    Article  Google Scholar 

  76. N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv. 5, 37925 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504). One author ‘Milan Masar’ also acknowledges an internal Grant IGA/CPS/2017/7 from TBU in Zlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Singh Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.S., Kuřitka, I., Vilcakova, J. et al. Influence of Gd3+-substitution on structural, magnetic, dielectric and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles. J Mater Sci: Mater Electron 29, 15878–15893 (2018). https://doi.org/10.1007/s10854-018-9674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9674-z

Navigation