Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15271–15281 | Cite as

Enhanced photocatalytic performance of Z-scheme Cu2O/Bi5O7I nanocomposites

  • Yongmei Xia
  • Zuming He
  • Jiangbin Su
  • Bin Tang
  • Ya Liu
Article
  • 11 Downloads

Abstract

Cu2O/Bi5O7I nanocomposites were prepared by a facile thermal decomposition process and chemical reduction route. The structures, morphologies, optical and electrochemical properties of the samples were characterized by XRD, XPS, SEM, TEM, HRTEM, DRS, EIS and photocurrent responses. The photocatalytic activity of the composites was evaluated by the degradation of rhodamine B (RhB) under simulated sunlight irradiation, compared to bare Cu2O and Bi5O7I, the Cu2O/Bi5O7I composites exhibit an enhanced photocatalytic activity. The highest photocatalytic activity was observed for the 25.0%Cu2O/Bi5O7I composite. The superior photocatalytic activity of Cu2O/Bi5O7I nancomposites could be mainly ascribed to the stronger absorption ability for visible light and the high separation efficiency of photogenerated electron and hole pairs via a Z-scheme mechanism. Furthermore, it is concluded from the experimental results that ·OH and ·O2 are the dominant reactive species causing the dye degradation. The photocatalytic Z-scheme mechanism involved was discussed.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61107055), the Specialized Research Fund for the Doctoral Program of Jiangsu University of Technology (KYY17011), the Jiangsu Province Key Laboratory of Materials Surface Science and Technology (KFBM20170003) and Cooperation projects between universities and enterprises (KYH17020002).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, X.X. Wang, A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. 12, 608 (2017)CrossRefGoogle Scholar
  2. 2.
    B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan. J. Colloid Interface Sci. 479, 271–283 (2016)CrossRefGoogle Scholar
  3. 3.
    L.J. Di, H. Yang, T. Xian, X.J. Chen, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization. Materials 10, 1118 (2017)CrossRefGoogle Scholar
  4. 4.
    B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl. J. Mol. Catal. A 423, 400–413 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Wang, H. Yang, Y.C. Zhang, Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Mater. Sci. Semicond. Process. 73, 58–66 (2018)CrossRefGoogle Scholar
  6. 6.
    S.M. Sun, W.Z. Wang, L. Zhang, L. Zhou, W.Z. Yin, M. Shang, Visible light-induced efficient contaminant removal by Bi5O7I. Environ. Sci. Technol. 43, 2005–2010 (2009)CrossRefGoogle Scholar
  7. 7.
    Y.N. Chen, G.Q. Zhu, M. Hojamberdiev, J.Z. Gao, R.L. Zhu, C.H. Wang, X.M. Wei, P. Liu, Three-dimensional Ag2O/Bi5O7I p-n heterojunction photocatalyst harnessing UV-vis-NIR broad spectrum for photodegradation of organic pollutants. J. Hazard. Mater. 344, 42–54 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Ba, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 117, 9952–9961 (2013)CrossRefGoogle Scholar
  9. 9.
    Z.M. Cui, H. Yang, X.X. Zhao, Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites. Mater. Sci. Eng. B 229, 160–172 (2018)CrossRefGoogle Scholar
  10. 10.
    C.Y. Liu, H.W. Huang, X. Du, T.Y. Zhang, N. Tian, Y.X. Guo, Y.H. Zhang, In situ co- crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis. J. Phys. Chem. C. 119, 17156–17165 (2015)CrossRefGoogle Scholar
  11. 11.
    L.J. Cheng, Y. Kang, Bi5O7I/Bi2O3 composite photocatalyst with enhanced visible light photocatalytic activity. Catal. Commun. 72, 16–19 (2015)CrossRefGoogle Scholar
  12. 12.
    S.M. Wang, Y. Guan, L.P. Wang, W. Zhao, H. He, J. Xiao, S.G. Yang, C. Sun, Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater. Appl. Catal. B 168–169, 448–457 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Cui, J.X. Yu, H.J. Lin, Y. Wu, L.H. Zhao, Y.M. He, In-situ preparation of Z-scheme AgI/Bi5O7I hybrid and its excellent photocatalytic activity. Appl. Surf. Sci. 387, 912–920 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.G. Yu, G. Chen, X. Wang, D.C. Jia, P.X. Tang, C.D. Lv, A facile approach to construct BiOI/Bi5O7I composites with heterostructures: efficient charge separation and enhanced photocatalytic activity. RSC Adv. 5, 74174–74179 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Shyamal, P. Hajra, H. Mandal, A. Bera, D. Sariket, A.K. Satpati, S. Kundu, C. Bhattacharya, Benign role of Bi on an electrodeposited Cu2O semiconductor towards photo-assisted H2 generation from water. J. Mater. Chem. A. 4, 9244–9252 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Wang, Y.J. Wei, X.X. Chang, C.C. Li, A. Li, S.S. Liu, J.J. Zhang, J.L. Gong, Homogeneous Cu2O p-n junction photocathodes for solar water splitting. Appl. Catal. B 226, 31–37 (2018)CrossRefGoogle Scholar
  17. 17.
    Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, J.B. Su, Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater. Lett. 184, 148–151 (2016)CrossRefGoogle Scholar
  18. 18.
    J.F. Ma, K. Wang, L.Y. Li, T.L. Zhang, Y. Kong, S. Komarneni, Visible-light photocatalytic decolorization of orange II on Cu2O/ZnO nanocomposites. Ceram. Int. 41, 2050–2056 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.M. He, Y.M. Xia, B. Tang, J.B. Su, Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites. Mater. Res. Express. 4, 095501 (2017)CrossRefGoogle Scholar
  20. 20.
    Z.Y. Min, X.P. Wang, Y.P. Li, J.B. Jiang, J. Li, D. Qian, J.H. Li, A highly efficient visible-light-responding Cu2O-TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes. Mater. Lett. 193, 18–21 (2017)CrossRefGoogle Scholar
  21. 21.
    Z. Li, K. Dai, J.F. Zhang, C.H. Liang, G.P. Zhu, Facile synthesis of novel octahedral Cu2O/Ag3PO4 composite with enhanced visible light photocatalysis. Mater. Lett. 206, 48–51 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.M. Xia, Z.M. He, W. Yang, B. Tang, Y.L. Lu, K.J. Hu, J.B. Su, X.P. Li, Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity. Mater. Res. Express. 5, 025504 (2018)CrossRefGoogle Scholar
  23. 23.
    Y.M. Xia, Z.M. He, J.B. Su, Y. Liu, B. Tang, Fabrication and photocatalytic property of novel SrTiO3/Bi5O7I nanocomposites. Nanoscale Res. Lett. 13, 148 (2018)CrossRefGoogle Scholar
  24. 24.
    Y.M. Xia, Z.M. He, Y.L. Lu, B. Tang, S.P. Sun, J.B. Su, X.P. Li, Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites. RSC Adv. 8, 5441–5450 (2018)CrossRefGoogle Scholar
  25. 25.
    C.H. Cao, L. Xiao, C.H. Chen, Q.H. Cao, Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites and their enhanced photocatalytic activity under visible light. Appl. Surf. Sci. 357, 1171–1179 (2015)CrossRefGoogle Scholar
  26. 26.
    H.W. Huang, C. Zeng, K. Xiao, Y.H. Zhang, Coupling of solid-solution and heterojunction in a 2D–1D core-shell-like BiOCl0.5I0.5/Bi5O7I hierarchy for promoting full-spectrum photocatalysis and molecular oxygen activation. J. Colloid Interface Sci. 504, 257–267 (2017)CrossRefGoogle Scholar
  27. 27.
    Z. Geng, Y. Zhang, X. Yuan, M.X. Huo, Y.H. Zhao, Y. Lu, Y. Qiu, Incorporation of Cu2O nanocrystals into TiO2 photonic crystal for enhanced UV-visible light driven photocatalysis. J. Alloys Compd. 644, 734–741 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Liu, L. Ding, W.W. An, S.L. Lin, J.H. Hu, Y.H. Liang, W.Q. Cui, Cu2O NPs decorated BiPO4 photocatalyst for enhanced organic contaminant degradation under visible light irradiation. RSC Adv. 6, 29202–29209 (2016)CrossRefGoogle Scholar
  29. 29.
    W.T. Mao, K.Y. Bao, F.P. Cao, B.K. Chen, G.Y. Liu, W.B. Wang, B.B. Li, Synthesis of a CoTiO3/BiOBr heterojunction composite with enhanced photocatalytic performance. Ceram. Int. 43, 3363–3368 (2017)CrossRefGoogle Scholar
  30. 30.
    Y.B. Liu, G.Q. Zhu, J.Z. Gao, R.L. Zhu, M. Hojamberdiev, C.H. Wang, X.M. Wei, P. Liu, A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation. Appl. Catal. B 205, 421–432 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Yu, X.J. Liu, H.P. Chu, G. Zhu, J.L. Li, J.Y. Liu, L.Y. Niu, Z. Sun, L.K. Pan, Enhancement of visible light photocatalytic activity of Ag2O/F-TiO2 composites. J. Mol. Catal. A 407, 25–31 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.M. Xia, Z.M. He, J.B. Su, B. Tang, K.J. Hu, Y.L. Lu, S.P. Sun, X.P. Li, Fabrication of magnetically separable NiFe2O4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv. 8, 4284–4294 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.C. Ye, H. Yang, R.S. Li, X.X. Wang, Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J. Sol-Gel. Sci. Technol. 82, 509–518 (2017)CrossRefGoogle Scholar
  34. 34.
    C. Liu, X.J. Wang, Room temperature synthesis of Bi4O5I2 and Bi5O7I ultrathin nanosheets with a high visible light photocatalytic performance. Dalton Trans. 45, 7720–7727 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Yang, L.J. Xu, C.L. Liu, T.P. Xie, Preparation and photocatalytic activity of porous Bi5O7I nanosheets. Appl. Surf. Sci. 319, 265271 (2014)Google Scholar
  36. 36.
    W. Sun, W.D. Sun, Y.J. Zhuo, Y. Chu, Facile synthesis of Cu2O nanocube/polycarbazole composites and their high visible-light photocatalytic properties. J. Solid State Chem. 184, 1638–1643 (2011)CrossRefGoogle Scholar
  37. 37.
    L. Liu, Y.H. Qi, J.S. Hu, Y.H. Lian, W.Q. Cui, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Appl. Surf. Sci. 351, 1146–1154 (2015)CrossRefGoogle Scholar
  38. 38.
    Y.C. Ye, H. Yang, X.X. Wang, W.J. Feng, Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater. Sci. Semicond. Process. 82, 14–24 (2018)CrossRefGoogle Scholar
  39. 39.
    M.Q. Fang, H.M. Jia, W.W. He, Y. Lei, L.Z. Zhang, Z. Zheng, Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films. Phys Chem. Chem. Phys. 17, 13531–13538 (2015)CrossRefGoogle Scholar
  40. 40.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)CrossRefGoogle Scholar
  41. 41.
    P. Raizada, P. Singh, A. Kumar, B. Pare, S.B. Jonnalagadda, Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite green. Sep. Purif. Technol. 133, 429–437 (2014)CrossRefGoogle Scholar
  42. 42.
    W.Y. Teoh, J.A. Scott, R. Amal, Progress in Heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3, 629–639 (2012)CrossRefGoogle Scholar
  43. 43.
    X. Zhao, H. Yang, Z. Cui, R. Li, W. Feng, Enhanced photocatalytic performance of Ag-Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method. Mater. Technol. 32(14), 870–880 (2017)CrossRefGoogle Scholar
  44. 44.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, Efficient complete oxidation of acetaldehyde into CO2 over Composite photocatalyst under visible and UV light irradiation. J. Phys. Chem. C. 111, 7574–7577 (2007)CrossRefGoogle Scholar
  45. 45.
    T. Tachikawa, M. Fujitsuka, T. Majima, Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259–5275 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Material Design and Additive Manufacturing, School of Materials and EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.Huaide CollegeChangzhou UniversityJingjiangChina
  3. 3.School of Mathematics & PhysicsChangzhou UniversityChangzhouChina
  4. 4.Jiangsu Key Laboratory of Materials Surface Science and TechnologyChangzhou UniversityChangzhouChina

Personalised recommendations