Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15259–15270 | Cite as

Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles

  • Vishwanath K. Mande
  • Dhananjay N. Bhoyar
  • S. K. Vyawahare
  • K. M. Jadhav
Article
  • 74 Downloads

Abstract

The Zn2+–Cr3+ substituted nickel ferrite nanoparticles with a chemical formula Ni1−xZnxFe2−xCrx O4 (0.0 \(\leq x \leq\) 1.0) were successfully synthesized by a sol–gel auto-combustion method. X-ray diffraction (XRD) patterns of all the samples confirm the single phase cubic spinel structure with Fd-3m space group. In the present system, the lattice constant was increased from 8.337 to 8.396 Å with increasing Zn2+–Cr3+ concentration. The average crystallite size (t) determined using the Debye–Scherrer’s formula, which lies in the range of 19–28 nm. The surface morphology was examined with field emission scanning electron microscopy (FE-SEM) and it showed that the particle size of the samples lies in the nano regime with a moderate agglomeration. The compositional stoichiometry was confirmed by energy dispersive spectrum (EDS). FT-IR spectra indicates two fundamental absorption bands, the higher frequency band \({\vartheta _1}~\) at 574–594 cm−1 and the lower frequency band \({\vartheta _2}~\) at 468–486 cm−1 arising from tetrahedral (A) and octahedral [B] sites it confirm the spinel structure. The magnetic properties of all the samples were measured using a Vibrating sample magnetometer (VSM) at room temperature. The saturation magnetization (Ms) was found to decrease due to B–B exchange and A–B superexchange interaction while remanent magnetization (Mr) and coercivity (Hc) decreases with increasing Zn2+–Cr3+ concentration. The DC electrical resistivity as a function of temperature revealed the semiconducting nature of all the samples. The activation energy (Ea) was found to increase from 0.371 to 0.478 eV with an increase in Zn2+–Cr3+ concentration. Overall, the Zn2+ and Cr3+ ions are successfully incorporated in the nickel ferrite by sol–gel auto-combustion method, and the spinel structure was not disturbed by the substitution. The magnetic and electrical properties of nickel ferrites are strongly influenced by the substitution, which may useful in technological and industrial applications.

Notes

Acknowledgements

One of the authors VKM is very much thankful to University of Solapur, Solapur for providing XRD characterizations, North Maharashtra University, Jalgaon for providingFESEM/EDS characterization, and TIFR, Mumbai for providing VSM facility.

References

  1. 1.
    A. Ahlawat, V. Sathe, V. Reddy, A. Gupta, Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRefGoogle Scholar
  3. 3.
    B. Bourgeois, K. Suignard, G. Perrusson, Electric and magnetic dipoles for geometric interpretation of three-component electromagnetic data in geophysics. Inverse Prob. 16, 1225 (2000)CrossRefGoogle Scholar
  4. 4.
    K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)CrossRefGoogle Scholar
  5. 5.
    S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci. 27, 5758–5763 (2016)Google Scholar
  6. 6.
    M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloy. Compd. 494, 175–189 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Hänninen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties. J. Mater. Process. Technol. 117, 424–430 (2001)CrossRefGoogle Scholar
  8. 8.
    S.J. Santosh, E.S. Sagar, B. Toksha, S. Shukla, K. Jadhav, Effect of cation proportion on the structural and magnetic properties of Ni-Zn ferrites nano-size particles prepared by co-precipitation technique. Chin. J. Chem. Phys. 21, 381 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Patange, S.E. Shirsath, S. Jadhav, K. Lohar, D. Mane, K. Jadhav, Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites. Mater. Lett. 64, 722–724 (2010)CrossRefGoogle Scholar
  10. 10.
    R.E. Smallman, R.J. Bishop, Metals and Materials: Science, Processes, Applications (Elsevier, Amsterdam, 2013)Google Scholar
  11. 11.
    W. Shen, Design of high-density transformers for high-frequency high-power converters, Ph.D. dissertation, Virginia Polytechnic Institute, 2006Google Scholar
  12. 12.
    K. Latimer, H. MacDonald, A survey of the possible applications of ferrites, Proceedings of the IEE-Part II: Power Engineering, vol. 97, pp. 257–267 (1950)Google Scholar
  13. 13.
    N. Sulaiman, M. Ghazali, B. Majlis, J. Yunas, M. Razali, Influence of calcination temperatures on structure and magnetic properties of calcium ferrite nanoparticles synthesized via sol-gel method. J. Tribol. 12, 38–47 (2017)Google Scholar
  14. 14.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci. 28, 14965–14973 (2017)Google Scholar
  15. 15.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  16. 16.
    M.M. Bućko, K. Haberko, Hydrothermal synthesis of nickel ferrite powders, their properties and sintering. J. Eur. Ceram. Soc. 27, 723–727 (2007)CrossRefGoogle Scholar
  17. 17.
    V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. Litterst, K. Becker, Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257, 377–386 (2003)CrossRefGoogle Scholar
  18. 18.
    A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189–196 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Gabal, Y. Al Angari, F. Al-Agel, Cr-substituted Ni–Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties. J. Magn. Magn. Mater. 391, 108–115 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Melo, F. Silva, K. Moura, A. De Menezes, F. Sinfrônio, Magnetic ferrites synthesised using the microwave-hydrothermal method. J. Magn. Magn. Mater. 381, 109–115 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Köseoğlu, M.I.O. Oleiwi, R. Yilgin, A.N. Koçbay, Effect of chromium addition on the structural, morphological and magnetic properties of nano-crystalline cobalt ferrite system. Ceram. Int. 38, 6671–6676 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci. 26, 3813–3818 (2015)Google Scholar
  24. 24.
    S.S. Jadhav, S.E. Shirsath, B. Toksha, S. Patange, D. Shengule, K. Jadhav, Structural and electric properties of zinc substituted NiFe2O4 nanoparticles prepared by co-precipitation method. Physica B 405, 2610–2614 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Mansour, M. Abdo, S. Alwan, The role of Cr3+ ions substitution on structural, magnetic and dielectric modulus of manganese zinc nanoferrites. Ceram. Int. 44, 8035–8042 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Raghasudha, D. Ravinder, P. Veerasomaiah, Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Mater. Sci. Appl. 4, 432 (2013)Google Scholar
  27. 27.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12– xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Gabal, R.M. El-Shishtawy, Y. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Karimi, P. Kameli, H. Ahmadvand, H. Salamati, Effects of Zn-Cr-substitution on the structural and magnetic properties of Ni1– xZnxFe2– xCrxO4 ferrites. Ceram. Int. 42, 16948–16955 (2016)CrossRefGoogle Scholar
  30. 30.
    K. Raju, G. Venkataiah, D. Yoon, Effect of Zn substitution on the structural and magnetic properties of Ni–Co ferrites. Ceram. Int. 40, 9337–9344 (2014)CrossRefGoogle Scholar
  31. 31.
    A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, S. García-Granda, Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164–171 (2016)CrossRefGoogle Scholar
  32. 32.
    A.S. Fawzi, A. Sheikh, V. Mathe, Structural, dielectric properties and AC conductivity of Ni(1– x) ZnxFe2O4 spinel ferrites. J. Alloy. Compd. 502, 231–237 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Bid, P. Sahu, S. Pradhan, Microstructure characterization of mechanosynthesized nanocrystalline NiFe2O4 by Rietveld’s analysis. Physica E 39, 175–184 (2007)CrossRefGoogle Scholar
  34. 34.
    M. Kooti, A.N. Sedeh, Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J. Mater. Sci. Technol. 29, 34–38 (2013)CrossRefGoogle Scholar
  35. 35.
    J. De Paiva, M. Graça, J. Monteiro, M. Macedo, M. Valente, Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. J. Alloy. Compd. 485, 637–641 (2009)CrossRefGoogle Scholar
  36. 36.
    A. El-Sayed, Influence of zinc content on some properties of Ni–Zn ferrites. Ceram. Int. 28, 363–367 (2002)CrossRefGoogle Scholar
  37. 37.
    S.E. Shirsath, B. Toksha, R. Kadam, S. Patange, D. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71, 1669–1675 (2010)CrossRefGoogle Scholar
  38. 38.
    M. Gabal, Y. Al Angari, Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite. Mater. Chem. Phys. 118, 153–160 (2009)CrossRefGoogle Scholar
  39. 39.
    S.E. Shirsath, B. Toksha, K. Jadhav, Structural and magnetic properties of In3+ substituted NiFe2O4. Mater. Chem. Phys. 117, 163–168 (2009)CrossRefGoogle Scholar
  40. 40.
    Y. Köseoğlu, Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Del Arco, P. Malet, R. Trujillano, V. Rives, Synthesis and characterization of hydrotalcites containing Ni (II) and Fe (III) and their calcination products. Chem. Mater. 11, 624–633 (1999)CrossRefGoogle Scholar
  42. 42.
    R. Kambale, N. Adhate, B. Chougule, Y. Kolekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J. Alloys Compds. 491, 372–377 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe 2– xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. 26, 9776–9781 (2015)Google Scholar
  44. 44.
    A.A. Khan, M. Javed, A.R. Khan, Y. Iqbal, A. Majeed, S.Z. Hussain, S. Durrani, Influence of preparation method on structural, optical and magnetic properties of nickel ferrite nanoparticles. Mater. Sci. Poland 35, 58–65 (2017)CrossRefGoogle Scholar
  45. 45.
    E. Hema, B. Venkatraman, Facile synthesis and characterization studies of magnetically reusable spinel NixZn1−xFe2O4 (x = 0.0 to 1.0). Nano-Catal. Adv. Sci. Eng. Med. 8, 619–625 (2016)CrossRefGoogle Scholar
  46. 46.
    S. Zahi, M. Hashim, A.R. Daud, Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. J. Magn. Magn. Mater. 308, 177–182 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Verma, T. Goel, R. Mendiratta, P. Kishan, Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208, 13–19 (2000)CrossRefGoogle Scholar
  48. 48.
    S.H. Lee, S.J. Yoon, G.J. Lee, H.S. Kim, C.H. Yo, K. Ahn, D.H. Lee, K.H. Kim, Electrical and magnetic properties of NiCrxFe2−xO4 spinel (0 ≤ x ≤ 0.6). Mater. Chem. Phys. 61, 147–152 (1999)CrossRefGoogle Scholar
  49. 49.
    S.E. Shirsath, S.S. Jadhav, B. Toksha, S. Patange, K. Jadhav, Remarkable influence of Ce4+ ions on the electronic conduction of Ni1– 2xCexFe2O4. Scripta Mater. 64, 773–776 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Department of Physics and Research CenterDeogiri CollegeAurangabadIndia

Personalised recommendations