Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15130–15137 | Cite as

A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing

  • Cheng Zhang
  • Liyi Li
  • Chia-Chi Tuan
  • Jian Zhou
  • Feng Xue
  • Ching-Ping Wong
Article
  • 85 Downloads

Abstract

TiO2 nanotube is a promising material for supercapacitor electrodes. Thermal annealing has been proved as an effective way enhancing the performance of TiO2 nanotube supercapacitors. However, heating rate, as an important parameter in the thermal annealing, has been overlooked as a factor that can influence the electrochemical performance of TiO2 nanotube supercapacitors. In this paper, we demonstrate that the electrochemical performance of TiO2 nanotube supercapacitors fabricated by anodization process can be significantly improved by tuning heating rate during hydrogen thermal annealing. At the optimal condition, the areal capacitance of TiO2 nanotube supercapacitors increased from 27.36 to 52.40 mF cm−2 with a scan rate of 100 mV s−1, while maintaining a high capacitance retention of 65.9% when the scan rate increased from 10 to 1000 mV s−1. Moreover, outstanding long-term cycling stability with only 4.8% capacitance reduction after 5000 charge–discharge cycles is observed. It is found that the electronic carrier densities, surface hydroxyl group density, as well as crystallite size in TiO2 are maximized at the optimal annealing condition, all of which are accounted for the enhancement of the electrochemical performance.

Notes

Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (51004039), and the Open Fund of Industry and Information Technology Key Laboratory of Materials Processing and Protection Technology for Harsh Environment (Nanjing University of Aeronautics and Astronautics) (56XCA17006-1).

Supplementary material

10854_2018_9654_MOESM1_ESM.docx (745 kb)
Supplementary material 1 (DOCX 745 KB)

References

  1. 1.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Wu, C. Xu, J. Xu, L. Lu, Z. Fan, X. Chen, Y. Song, D. Li, Nanotechnology 24, 455401 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Qin, J. Zhang, Y. Wang, X. Shu, C. Yu, J. Cui, H. Zheng, Y. Zhang, Y. Wu, RSC Adv 6, 47669 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Zhou, Y. Zhang, J. Phys. Chem. C 118, 5626 (2014)CrossRefGoogle Scholar
  5. 5.
    V.C. Anitha, A.N. Banerjee, G.R. Dillip, S.W. Joo, B.K. Min, J. Phys. Chem. C 120, 9569 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 13, 5038 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, Z. Chen, Y. Song, M. Yin, D. Li, X. Zhu, X. Chen, P.C. Chang, L. Lu, Electrochem. Commun. 68, 23 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Fan, H. Zhang, X. Luo, M. Liao, X. Zhu, J. Ma, Y. Song, J. Power Sources 357, 230 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Cui, Y. Chen, S. Lu, S. Zhang, X. Zhu, Y. Song, Electrochim. Acta 253, 455 (2017)CrossRefGoogle Scholar
  10. 10.
    J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006)CrossRefGoogle Scholar
  12. 12.
    C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Nano Lett. 6, 2690 (2006)CrossRefGoogle Scholar
  13. 13.
    J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 11312 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 111, 14925 (2007)CrossRefGoogle Scholar
  16. 16.
    C. Kim, S. Kim, J. Lee, J. Kim, J. Yoon, ACS Appl. Mater. Interfaces 7, 7486 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, Electrochim. Acta 116, 129 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Ning, X. Wang, X. Yu, J. Li, J. Zhao, J. Alloys Compd. 658, 177 (2016)CrossRefGoogle Scholar
  19. 19.
    S.A. Al-Thabaiti, R. Hahn, N. Liu, R. Kirchgeorg, S. So, P. Schmuki, S.N. Basahel, S.M. Bawaked, Chem. Commun. 50, 7960 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Zhong, S. Sang, Y. Liu, Q. Wu, K. Liu, H. Liu, J. Power Sources 294, 216 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21, 5128 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Salari, S.H. Aboutalebi, A.T. Chidembo, I.P. Nevirkovets, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 14, 4770 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Salari, S.H. Aboutalebi, A.T. Chidembo, K. Konstantinov, H.K. Liu, J. Alloys Compd. 586, 197 (2014)CrossRefGoogle Scholar
  24. 24.
    Z. Pei, M. Zhu, Y. Huang, Y. Huang, Q. Xue, H. Geng, C. Zhi, Nano Energy 20, 254 (2016)CrossRefGoogle Scholar
  25. 25.
    J.L. Keddie, E.P. Giannelis, J. Am. Ceram. Soc. 74, 2669 (1991)CrossRefGoogle Scholar
  26. 26.
    E. McCafferty, J.P. Wightman, Surf. Interface Anal. 26, 549 (1998)CrossRefGoogle Scholar
  27. 27.
    B. Siemensmeyer, J.W. Schultze, Surf. Interface Anal. 16, 309 (1990)CrossRefGoogle Scholar
  28. 28.
    D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18, 1178 (2006)CrossRefGoogle Scholar
  29. 29.
    M.-S. Wu, Z.-S. Guo, J.-J. Jow, J. Phys. Chem. C 114, 21861 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Li, B. Song, L. Maurer, Z. Lin, G. Lian, C.-C. Tuan, K.-S. Moon, C.-P. Wong, Nano Energy 21, 276 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Leijtens, S.D. Stranks, G.E. Eperon, R. Lindblad, E.M.J. Johansson, I.J. McPherson, H. Rensmo, J.M. Ball, M.M. Lee, H.J. Snaith, ACS Nano 8, 7147 (2014)CrossRefGoogle Scholar
  32. 32.
    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014)CrossRefGoogle Scholar
  33. 33.
    S. Das, R. Zazpe, J. Prikryl, P. Knotek, M. Krbal, H. Sopha, V. Podzemna, J.M. Macak, Electrochim. Acta 213, 452 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Industry and Information Technology Key Laboratory of Materials Processing and Protection Technology for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyNanjingChina

Personalised recommendations