Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15112–15118 | Cite as

Investigation on microwave dielectric behavior of flaky carbonyl iron composites

  • Jun He
  • Heng LuoEmail author
  • Longhui He
  • Shuoqing Yan
  • Dongyong Shan
  • Shengxiang Huang
  • Lianwen DengEmail author


The corresponding mechanism of high complex permittivity for micro flaky Fe-filled composites was still not apparent. In this letter, the dielectric behaviors of flaky carbonyl iron/epoxy resin composites within 2–18 GHz were studied experimentally and theoretically. Results show that an obvious increase both in real and imaginary part of permittivity can be observed as the volume fractions of FCI is up to the percolation threshold. Considering the influence of conduction current, a revised Debye model of permittivity has been proposed to reveal the mechanism of dielectric behavior in composites. The best fitting result demonstrate that conduction loss played an important role in increasing the permittivity after percolation. Fe3O4 was used as encapsulated shell on surface of the FCI to control the conduction and enhance the percolation threshold, resulting in better microwave absorption from better balance between the complex permittivity and permeability.



This work was supported by the National Key Research and Development Program of China (No. 2017YFA0204600), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts064) .


  1. 1.
    T. Wang, R. Han, G.G. Tan, J.Q. Wei, L. Qiao, F.S. Li, Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 112, 104903 (2012)CrossRefGoogle Scholar
  2. 2.
    Z.Y. Zhang, X.X. Liu, H.F. Zhang, E. Li, Electromagnetic and microwave absorption properties of carbon fibers coated with carbonyl iron. J. Mater. Sci.: Mater. Electron. 26(9), 6518–6525 (2015)Google Scholar
  3. 3.
    J. Zhang, P. Xiao, W. Zhou, W. Hong, H. Luo, Preparation and microwave absorbing properties of carbon fibers/epoxy composites with grid structure. J. Mater. Sci.: Mater. Electron. 26(2), 651–658 (2015)Google Scholar
  4. 4.
    L.W. Deng, L. Ding, K.S. Zhou, S.X. Huang, Z.W. Hu, B.C. Yang, Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. J. Magn. Magn. Mater. 323(14), 1895–1898 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Liu, H. Luo, S.Q. Yan, L.L. Yao, Y.H. Li, L.H. He, S.X. Huang, L.W. Deng, Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO3. J. Magn. Magn. Mater. 426(3), 267–272 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, W.F. Zhu, W.D. Zhang, S.R. Zheng, S.H. Qi, Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance. J. Mater. Sci.: Mater. Electron. 29(6), 1–9 (2018)Google Scholar
  7. 7.
    J. He, L.W. Deng, S. Liu, S.Q. Yan, H. Luo, Y.H. Li, L.H. He, S.X. Huang, Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl. J. Magn. Magn. Mater. 444, 49–53 (2017)CrossRefGoogle Scholar
  8. 8.
    P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J.W. Chen, R.Q. Xu, J. Chen, Fabrication and microwave absorption properties of the flaky carbonyl iron/FeSiAl composite in S-band. J. Mater. Sci.: Mater. Electron. 29(6), 1–6 (2018)Google Scholar
  9. 9.
    R.B. Yang, W.F. Liang, C.W. Lou, J.H. Lin, Electromagnetic and microwave absorption properties of magnetic stainless steel powder in 2–18 GHz. J. Appl. Phys. 111, 07A338 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Zhao, S.Y. Xu, D.M. Tang, Y. Yang, B.S. Zhang, Thin magnetic coating for low-frequency broadband microwave absorption. J. Appl. Phys. 116, 243911 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. J. Magn. Magn. Mater. 323(5), 600–606 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Li, T.L. Wu, W. Wang, P.C. Zhai, J.G. Guan, Broadband patterned magnetic microwave absorber. J. Appl. Phys. 116, 044110 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Han, L. Qiao, T. Wang, F.S. Li, Microwave complex permeability of planar anisotropy carbonyl-iron particles. J. Alloys Compd. 509(6), 2734–2737 (2011)CrossRefGoogle Scholar
  14. 14.
    J.H. He, W. Wang, J.G. Guan, Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111, 093924 (2012)CrossRefGoogle Scholar
  15. 15.
    R.B. Yang, W.F. Liang, Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 109, 07A311 (2011)CrossRefGoogle Scholar
  16. 16.
    Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. J. Magn. Magn. Mater. 321(1), 25–28 (2009)CrossRefGoogle Scholar
  17. 17.
    F.S. Wen, W.L. Zuo, H.B. Yi, N. Wang, L. Qiao, F.S. Li, Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Physica B 404(20), 3567–3570 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Wang, J.X. Guo, C. Long, W. Li, J.G. Guan, Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 637, 106–111 (2015)CrossRefGoogle Scholar
  19. 19.
    M.G. Han, W. Tang, W.B. Chen, H. Zhou, L.J. Deng, Effect of shape of Fe particles on their electromagnetic properties within 1–18 GHz range. J. Appl. Phys. 107, 09A958 (2010)CrossRefGoogle Scholar
  20. 20.
    D.D. Min, W.C. Zhou, F. Luo, D.M. Zhu, Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite. J. Magn. Magn. Mater. 435, 26–32 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.P. Duan, Q. Xi, W. Liu, T.M. Wang, Broadband superior electromagnetic absorption of a discrete-structure microwave coating. J. Magn. Magn. Mater. 416, 155–163 (2016)CrossRefGoogle Scholar
  22. 22.
    H.T. Guan, S.H. Liu, Y.P. Duan, Expanded polystyrene as an admixture in cement-based composites for electromagnetic absorbing. J. Mater. Eng. Perform. 16(1), 68–72 (2007)CrossRefGoogle Scholar
  23. 23.
    N. Tian, J.W. Wang, F. Li, Z. Mei, Z.X. Liu, L.L. Ge, C.Y. You, Enhanced microwave absorption of Fe flakes with magnesium ferrite cladding. J. Magn. Magn. Mater. 324(24), 4175–4178 (2012)CrossRefGoogle Scholar
  24. 24.
    W.Q. Zhang, S.W. Bie, H.C. Chen, Y. Lu, J.J. Jiang, Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite. J. Magn. Magn. Mater. 358–359, 1–4 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Luo, P. Xiao, W. Hong, Dielectric behavior of laminate-structure Cf/Si3N4 composites in X-band. Appl. Phys. Lett. 105, 172903 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Wang, Z.M. Dang, Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl. Phys. Lett. 87, 042903 (2005)CrossRefGoogle Scholar
  27. 27.
    Z.M. Dang, Y.H. Lin, C.W. Nan, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 15(19), 1625–1629 (2003)CrossRefGoogle Scholar
  28. 28.
    V. Myroshnychenko, C. Brosseau, Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures. J. Appl. Phys. 97(4), 044101 (2005)CrossRefGoogle Scholar
  29. 29.
    Y.H. Wu, M.G. Han, T. Liu, L.J. Deng, Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes. J. Appl. Phys. 118, 023902 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, Y.H. Qu, Y.M. Shi, Mechanical, dielectric and microwave absorption properties of TiC/cordierite composite ceramics. J. Mater. Sci.: Mater. Electron. 28(16), 12115–12121 (2017)Google Scholar
  31. 31.
    J.J. More, D.C. Sorensen, Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1981)CrossRefGoogle Scholar
  32. 32.
    H. Luo, S.F. Zeng, Y.Q. Tan, H.B. Zhang, S.M. Peng, Mechanism of microwave dielectric response in carbon nanofibers enabled BCN composites. J. Mater. Sci.: Mater. Electron. 27(10), 10435–10441 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations