Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15097–15105 | Cite as

Room-temperature growth (“farming”) and high-performance supercapacitor applications of highly crystalline CuO nanowires/graphene nanoplatelet nanopowders

  • Churl Seung Lee
  • Joonho BaeEmail author


We report a first-of-its-kind farming-like growth of nanopowders of CuO nanowires (NWs) via room-temperature thermal oxidation. Compared to conventional thermal annealing methods for producing copper oxide nanostructures, which require elevated temperatures (300–600 °C), the present method yields a large amount of highly crystalline CuO NW nanopowders at a much lower temperature (i.e., room temperature). Two-dimensional carbon nanostructures such as graphene nanoplatelets (GNPs) were used as supports for the growth of the CuO NWs. The GNPs were coated with Cu seed layers by the electroless plating method, which is suitable for mass production. After electroplating of Cu layers, the GNP supports were kept at room temperature and under constant humidity (50 or 60% relative humidity) for over 24 h, resulting in the dense wire-like morphology of copper oxide. Scanning electron microscopy, energy dispersive X-ray diffraction, X-ray diffraction, and Raman spectroscopy measurements revealed that the NWs consisted of highly crystalline monoclinic CuO. Once the NWs were formed, their morphology was stable for up to 168 h at room temperature. The as-prepared CuO nanopowders were tested as electrodes of electrochemical capacitors (or supercapacitors). In a three-electrode configuration, a working electrode made of CuO NWs exhibited an excellent mass-specific capacitance of 145 F g−1 at 5 mV s−1 in a 3 M KOH aqueous electrolyte. The growth of CuO nanopowders on GNPs illustrated in this study demonstrates a novel approach for the room-temperature synthesis of nanopowders, with promising applications in next-generation energy devices.



This work was supported by the Technology Innovation Program (10052774, Development of hybrid supercapacitor by nano structure carbon for ISG Applications) funded by the Ministry of Trade, Industry & Energy (MI, Korea). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032466).

Supplementary material

10854_2018_9650_MOESM1_ESM.docx (156 kb)
Supplementary material 1 (DOCX 155 KB)


  1. 1.
    D. Dubal, D. Dhawale, R. Salunkhe, V. Jamdade, C. Lokhande, J. Alloy. Compd. 492, 26 (2010)CrossRefGoogle Scholar
  2. 2.
    M.-J. Deng, C.-C. Wang, P.-J. Ho, C.-M. Lin, J.-M. Chen, K.-T. Lu, J. Mater. Chem. A 2, 12857 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Zhang, J. Feng, M. Zhang, Mater. Res. Bull. 43, 3221 (2008)CrossRefGoogle Scholar
  4. 4.
    V. Patake, S. Joshi, C. Lokhande, O.-S. Joo, Mater. Chem. Phys. 114, 6 (2009)CrossRefGoogle Scholar
  5. 5.
    S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, ACS Appl. Mater. Interface 7, 4851 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources 196, 5756 (2011)CrossRefGoogle Scholar
  7. 7.
    D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Res. Bull. 48, 923 (2013). CrossRefGoogle Scholar
  8. 8.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Burke, J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
  10. 10.
    X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 341, 534 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Zhong, Y. Deng, W. Hu et al., (2016) Electrolytes for Electrochemical Supercapacitors. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. 12.
    S. Shinde, D. Dubal, G. Ghodake, D. Kim, V. Fulari, J. Electroanal. Chem. 732, 80 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Xiao, X. Peng, H. Jin et al., Adv. Mater. 25, 5091 (2013)CrossRefGoogle Scholar
  14. 14.
    K.-J. Huang, J.-Z. Zhang, K. Xing, Electrochim. Acta 149, 28 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Heng, C. Qing, D. Sun, B. Wang, H. Wang, Y. Tang, RSC Adv. 3, 15719 (2013). CrossRefGoogle Scholar
  16. 16.
    C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, J. Power Sources 258, 290 (2014)CrossRefGoogle Scholar
  17. 17.
    I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen (2013) New Developments in Photon and Materials Research. ed. JI Jang (Nova Science Publishers, Hauppauge)Google Scholar
  18. 18.
    X. Li, J. Liang, N. Kishi, T. Soga, Mater. Lett. 96, 192 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Vila, C. Díaz-Guerra, J. Piqueras, J. Phys. D 43, 135403 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, A. Srivastava, P. Tiwari, R. Nandedkar, J. Phys. 16, 8531 (2004)Google Scholar
  21. 21.
    S. Shinde, D. Dubal, G. Ghodake et al., Adv. Sci. Lett. 21, 2653 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Niu, D. Zhou, X. Yang, X. Li, Q. Wang, F. Qu, J. Mater. Chem. A 3, 18413 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Endut, M. Hamdi, W. Basirun, Thin Solid Films 528, 213 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.X. Zhang, M. Huang, M. Kuang et al., Int. J. Electrochem. Sci. 8, 1366 (2013)Google Scholar
  26. 26.
    X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J Su, J. Power Sources 216, 290 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Peng, L. Li, H. Tan et al., Adv. Func. Mater. 24, 2155 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energy Nanomaterials Research CenterKorea Electronics Technology InstituteSeongnam-siRepublic of Korea
  2. 2.Department of Nano-physicsGachon UniversitySeongnam-siSouth Korea

Personalised recommendations