Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15074–15085 | Cite as

Hierarchically structure CrO4–TiO2 nanocomposite material and its multi application

  • Namasivayam Santhi
  • Kandhasamy Subashri
  • Balasubramanian Prabhakaran
Article
  • 32 Downloads

Abstract

The CrO4–TiO2 nanocomposite material has been successfully achieved the precipitation route and sonication technique. The experimental results exposes that 400 °C of CrO4–TiO2 nanocomposite material exhibited in the higher photoatalytic activity for the degradation of azo dye Trypan Blue (TB) under UV-light. This nanocomposite material was characterized by High-resolution scanning electron microscopy (HR-SEM) with elementary dispersive X-ray (EDX), High-resolution transmission electron microscopy (HR-TEM), XRD analysis, photoluminescence spectroscopy (PL), UV–Vis DRS and BET-Surface analysis. The HR-SEM images reveal that most nanoflakes are linked together by an edge-to-flat-surface by the conjunction of EDX studies that Ti, O and Cr are in higher mediation. The HR-TEM images indicate a spherical and hexagonal in structure. The CrO4–TiO2 nanocomposite material was found to be the stable and reusable. This nanocomposite material was an antibacterial activity and an electrochemical activity as showed highest activity that of TiO2 nanocomposite material was reported.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    R.E. Kirk-Othmer, Kirk-Othmer Encyclopedia of Chemical Technology, (Wiley, New York, 3, 387–433 1978)Google Scholar
  2. 2.
    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, H. Efficient, Solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir. 29, 939–949 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)CrossRefGoogle Scholar
  4. 4.
    M.Y. Guo, A.M. Ng, F. Ching, Liu, A.B.Djurisic, W.K., H. Chan, K.S. Su, Wong, Effect of native defects on photocatalytic properties of ZnO. J. Phys. Chem. C 115, 11095–11101 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Li, Z. Wei, T. Wu, O. Peng, Y. Li, Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660–5663 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Li, X. Zhou, X. Hu, X. Zhao, P. Fang, Formation of surface complex leading to efficient visible photocatalytic activity and improvement of photostabilty of ZnO. J. Phys. Chem. C 113, 16188–16192 (2009)CrossRefGoogle Scholar
  7. 7.
    H.K. Shon, S. Phuntsho, S. Vigneswaran, Effect of photocatalysis on the membrane hybrid system for wastewater treatment. Desalin. Water Treat. 225, 235–248 (2008)Google Scholar
  8. 8.
    T.K. Ghorai, D. Dhak, S.K. Biswas, S. Dalai, P. Pramanik, Photocatalytic oxidation of organic dyes by nano-sized metal molyb date incorporated titanium dioxide (MxMoxTi1–xO6) (M = Ni, Cu, Zn) photocatalysts. J. Mol. Catal. A: Chem. 273, 2249 (2007)CrossRefGoogle Scholar
  9. 9.
    T.K. Ghorai, M. Chakraborty, P. Pramanik, Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. J Alloys Compds. 509, 815864 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.R. Do, W. Lee, K. Dwight, A. Wold, The effect of WO3 on the photocatalytic activity of TiO2. J. Solid State Chem. 108, 198 (1994)CrossRefGoogle Scholar
  11. 11.
    J. Papp, S. Soled, K. Dwight, A. Wold, Surface acidity and photo—catalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts. Chem Mater. 6, 496500 (1994)CrossRefGoogle Scholar
  12. 12.
    L. Xu, E.M.P. Steinmiller, S.E. Skrabalak, Achieving synergy with a potential photocatalytic Z-scheme: synthesis and evaluation of nitrogen-doped TiO2/SnO2 composites. J PhysChem C. 116, 8717 (2012)Google Scholar
  13. 13.
    X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 30, 64753 (1996)Google Scholar
  14. 14.
    J. Yin, Z. Zou, J. Ye, Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M = Sr, Ba). Chem. Phys. Lett. 378, 248 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Kamalakkannan, V.L. Chandraboss, S. Prabha, S. Senthilvelan, Advanced construction of heterostructured InCrO4–TiO2 and its dual properties of greater UV-photocatalytic and antibacterial activity. RSC Adv. 5, 77000–77013 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Liquiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells. 70, 133–151 (2003)CrossRefGoogle Scholar
  17. 17.
    E. Forgacs, T. Csarhati, G. Oros, Removal of synthetic dyes from wastewaters. Rev. Environ. Int. 30, 953–971 (2004)CrossRefGoogle Scholar
  18. 18.
    T. Rajesh, K. Pravin, R.G. Surolia, V. Kulkarni, Raksh, Sci. Tech. Adv. Mater. 8, 455–462 (2007)CrossRefGoogle Scholar
  19. 19.
    M.Eghbali-Arania,A.Sobhani-Nasabb,M. Rahimi-Nasrabadic, F. Ahmadid, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Saeid Pourmasoud, M. Sobhani-Nasab, M. Behpour, F. Rahimi-Nasrabadi, Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Maryam Akbari, F. Aetemady, M. Firoozeh, Yaseliani, Synthesis of AgO–TiO2 nanocomposite through a simple method and its antibacterial activities. J. Mater. Sci.: Mater. Electron. 28, 10245–10249 (2017)Google Scholar
  22. 22.
    A.Sobhani-Nasab,Z. Zahraei, M. Akbari, M. Maddahfar, S. Mostafa Hosseinpour-Mashkani, Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 Nanocomposite. J. Mol. Struct. 1139, 430–435 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catal. Sci. Technol. 2, 2319–2326 (2012)CrossRefGoogle Scholar
  24. 24.
    V.L. Chandraboss, J. Kamalakkannan, S. Senthilvelan, Synthesis and characterization of UV active photocatalyst Cd@SiO2 and its photovoltaic performance DJ. J. Eng. Chem. Fuel. 2, 25–35 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Kamalakkannan, V.L. Chandraboss, S. Prabha, B. Karthikeyan, S. Senthilvelan, Synthesis of InMoO4–TiO4 nanocomposite—photocatalysis of genotoxic dye multiapplication study. Ceram. Int. 42, 10197–10208 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Kamalakkannan, S. Senthilvelan, Morphology convenient flower like nanostructures of CdO–SiO2 nanomaterial and its photocatalytic application. WSN, 62, 46–63 (2017)Google Scholar
  27. 27.
    K.S.W. Singh, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  28. 28.
    B. Chouchene, T.B. Chaabane, L. Balan, E. Girot, K. Mozet, G. Medjahdi, R. Schneider, High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J. Nanotechnol. 7, 1338–1349 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Yu, L. Zhang, B. Cheng, Y. Su, J. Phys. Chem. C 111, 10582 (2007)CrossRefGoogle Scholar
  30. 30.
    V.L. Chandraboss, L. Natanapatham, B. Karthikeyan, J. Kamalakkannan, S. Prabha, S. Senthilvelan, Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light. Mater. Res. Bull. 48, 3707–3712 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Kamalakkannan, V.L. Chandraboss, B. Loganathan, S. Prabha, B. Karthikeyan, S. Senthilvelan, TiInCrO6-nanomaterial synthesis, characterization and multiapplications. Appl. Nanosci. (2015).  https://doi.org/10.1007/s13204-015-0474-y Google Scholar
  32. 32.
    S. Balachandran, S.G. Praveen, R. Velmurugan, M. Swaminathan, S. Gopinathan, Facile fabrication of highly efficient, reusable heterostructured Ag–ZnO–CdO and its twin applications of dye degradation under natural sunlight and self-cleaning. RSC Adv. 4, 4353–4362 (2014)CrossRefGoogle Scholar
  33. 33.
    V.L. Chandraboss, J. Kamalakkannan, S. Prabha, S. Senthilvelan, An efficient removal of methyl violet from aqueous solution by an AC-Bi /ZnO nanocomposite material. RSC Adv. 5, 25857 (2015)CrossRefGoogle Scholar
  34. 34.
    Q. Xiang, J. Yu, M. Jaroniec, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Zhao, C.Z. Li, X.H. Liu, F. Gu, H.B. Jiang, W. Shao, L. Zhang, Y. He, Mater. Lett. 61, 79 (2007)CrossRefGoogle Scholar
  36. 36.
    P.M. Kumar, S. Badrinarayanan, M. Sastry, Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films. 358, 122 (2000)CrossRefGoogle Scholar
  37. 37.
    K. Ameta, P. Tak, D. Soni, S.C. Ameta, Synthesis and trypanocidal evaluation of some novel 2-(substituted benzylidene)-5, 7-dibromo-6-hydroxy-1-benzofuran-3(2H)-ones. Sci. Rev. Chem. Commun. 4, 38–45 (2014)Google Scholar
  38. 38.
    Y. Zhang, L. Wang, B. Liu, J. Zhai, H. Fan, D. Wang, Y. Lin, T. Xie, Synthesis Zn-doped TiO2 microspheres with enhanced photovoltaic performance and application for dye—sensitized solar cell. Electrochim. Acta 56, 6517–6523 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Kamalakkannan, V. Chandraboss, S. Prabha, B. Karthikeyan, S. Senthilvelan, Preparation and characterization of TiInVO6-nanomaterial using precipitation method and its multi applications. J. Mater. Sci: Mater. Electron. 27(3), 2488–2503 (2015)Google Scholar
  40. 40.
    S. Banerjee, J. Gopal, P. Muraleedharan, A.K. Tyagi, B. Raj, Physical and chemistry of photocatalytic titanium dioxide visualization of bactericidal activity using atomic force microscopy. Curr. Sci. 90, 1378–1383 (2006)Google Scholar
  41. 41.
    R.P. Kiran Gupta, A. Singh, Pandey, A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag- doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 4, 345–351 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Namasivayam Santhi
    • 1
  • Kandhasamy Subashri
    • 2
  • Balasubramanian Prabhakaran
    • 2
  1. 1.Department Of ChemistryGovt Arts CollegeChidambaramIndia
  2. 2.Research and Development CentreBharathiar UniversityCoimbatoreIndia

Personalised recommendations