Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15042–15051 | Cite as

Three dimensional network Si–C composite coating constructed by porous skeletons as an integrated anode for lithium-ion batteries

  • Yuge Fu
  • Qi Yang
Article
  • 75 Downloads

Abstract

This paper reports a facile knife coating route to synthesize Cu-supported Si–C composite as an integrated anode for lithium-ion batteries. The composite displays a three dimensional (3D) network structure constructed by porous skeletons with Si nano-particles encapsulated in carbon matrix. The Cu-supported Si–C composite electrode demonstrates good capacity retention performance and rate performance. It delivers a high capacity of 1429 mA h g−1 at a current density of 1 A g−1 after 100 cycles and a capacity of 677 mA h g−1 at a high current density up to 20 A g−1. There are two facts responsible for its excellent electrochemical performance: (1) 3D network structure produced by volatilization of polymethylmethacrylate (PMMA) improves structure stability of the electrode; (2) abundant tunnels in skeletons made by volatilization of polyethylene glycol (PEG) increases diffusion of lithium-ions in the electrode.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 51701114) and Shanghai Municipal Education Commission (High-energy Beam Intelligent Processing and Green Manufacturing).

Funding

This study was funded by the Natural Science Foundation of China (No. 51701114) and Shanghai Municipal Education Commission (High-energy Beam Intelligent Processing and Green Manufacturing).

Compliance with ethical standards

Conflict of interest

The authors declare that we have no conflict of interest.

References

  1. 1.
    J.M. Tarascon, M. Amand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  3. 3.
    J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673–4677 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Zhou, X.L. Li, B. Wang, Y.B. Zhang, J. Ning, Z.C. Xiao, X.H. Zhang, Y.H. Chang, H.J. Zhi, High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano. Lett. 15, 6222–6228 (2015)CrossRefGoogle Scholar
  5. 5.
    J.X. Wu, X.Y. Qin, H.R. Zhang, Y.B. He, B.H. Li, L. Ke, W. Lv, H.D. Du, Q.H. Yang, F.Y. Kang, Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 84, 434–443 (2015)CrossRefGoogle Scholar
  6. 6.
    N. Li, S.X. Jin, Q.Y. Liao, H. Cui, C.X. Wang, Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 5, 105–115 (2014)CrossRefGoogle Scholar
  7. 7.
    H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, Y.C. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130, 433–440 (2018)CrossRefGoogle Scholar
  8. 8.
    H.D. Chen, Z.L. Wang, H.X. Hou, L.J. Fu, S.F. Wang, X.Q. Hu, H.Q. Qin, Y.P. Wu, Q. Ru, X. Liu, S.J. Hu, Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim. Acta 249, 113–121 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Li, X.H. Hou, Y.J. Sha, J. Wang, S.J. Hu, X. Liu, Z.P. Shao, Facile spray-drying/pyrolysis synthesis of coreeshell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J. Power Sour. 248, 721–728 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Wang, C.X. Ding, L.C. Zhang, H.W. Xu, D.W. Zhang, T. Cheng, C.H. Chen, A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sour. 195, 5052–5056 (2010)CrossRefGoogle Scholar
  11. 11.
    Q.L. Wu, T. Tran, W.Q. Lu, J. Wu, Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J. Power Sour. 258, 39–45 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Zhou, L.J. Wan, Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9, 2684–2688 (2013)CrossRefGoogle Scholar
  13. 13.
    T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012)CrossRefGoogle Scholar
  14. 14.
    Z.X. Yang, G.D. Du, C.Q. Feng, S. Li, Z.X. Chen, P. Zhang, A.P. Guo, X.B. Yu, G.N. Chen, S.Z. Huang, H.K. Liu, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim. Acta 55, 5485–5491 (2010)CrossRefGoogle Scholar
  15. 15.
    K.Z. Cao, L.F. Jiao, H.Q. Liu, Y.C. Liu, Y.J. Wang, Z.P. Guo, H.T. Yuan, 3D hierarchical porous alpha-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 5, 1401–1421 (2015)Google Scholar
  16. 16.
    K.Z. Cao, L.F. Jiao, Y.C. Liu, H.Q. Liu, Y.J. Wang, H.T. Yuan, Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 25, 1082–1089 (2015)CrossRefGoogle Scholar
  17. 17.
    Q.H. Tian, Y. Tian, Z.X. Zhang, L. Yang, S. Hirano, Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries. J. Power Sour. 306, 213–218 (2016)CrossRefGoogle Scholar
  18. 18.
    J.G. Tang, G.H. Chen, J. Yang, X.Y. Zhou, L.M. Zhou, B. Huang, Sillica-assistant synthesis of three-dimensional grapheme architecture and its application as anode material for lithium ion batteries. Nano Energy 8, 62–70 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.P. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, L.W. Yang, J.X. Zhong, Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 88, 766–771 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.P. Tang, L. Hong, Q.L. Wu, J.Q. Li, G.Y. Hou, H.Z. Cao, L.K. Wu, G.Q. Zheng, TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 195, 27–33 (2016)CrossRefGoogle Scholar
  21. 21.
    Y.P. Tang, X.X. Tan, G.Y. Hou, G.Q. Zheng, Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 117, 172–178 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.P. Tang, X.X. Tan, G.Y. Hou, H.Z. Cao, G.Q. Zheng, Synthesis of dense nanocavities inside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries. Electrochim. Acta 78, 154–159 (2012)CrossRefGoogle Scholar
  23. 23.
    P.X. Zhang, L. Huang, Y.L. Li, X.Z. Ren, L.B. Deng, Q.H. Yuan, Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries. Electrochim. Acta 192, 385–391 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Zhang, Z.H. Sun, T.F. Zhang, D. Sui, Y.F. Ma, Y.S. Chen, Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon 102, 32–38 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Tian, W. Wang, Y. Liu, K.L. Jungjohann, C.T. Harris, Y.C. Lee, R.G. Yang, A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 11, 500–509 (2015)CrossRefGoogle Scholar
  26. 26.
    M.F. Hassan, M.M. Rahman, Z.P. Guo, Z.X. Chen, H.K. Liu, SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 20, 9707–9712 (2010)CrossRefGoogle Scholar
  27. 27.
    E. Radvanyi, E.D. Vito, W. Porcher, S.J.S. Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. At. Spectrom. 29, 1120–1131 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Yi, J.T. Zai, F. Dai, M.L. Gordin, D.H. Wang, Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries. Electrochem. Commun. 36, 29–32 (2013)CrossRefGoogle Scholar
  29. 29.
    Z.X. Yang, G.D. Du, Q. Meng, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, R. Zeng, Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. 22, 5848–5854 (2012)CrossRefGoogle Scholar
  30. 30.
    Z.X. Yang, G.D. Du, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, H.K. Liu, TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Mater. Chem. 21, 8591–8596 (2011)CrossRefGoogle Scholar
  31. 31.
    W.H. Li, Z.Z. Yang, Y. Jiang, Z.R. Yu, L. Gu, Y. Yu, Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 78, 455–462 (2014)CrossRefGoogle Scholar
  32. 32.
    Y.T. Peng, C.T. Lo, Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 19, 3401–3410 (2015)CrossRefGoogle Scholar
  33. 33.
    C.D. Gu, Y.J. Mai, J.P. Zhou, Y.H. You, J.P. Tu, Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. J. Power Sour. 214, 200–207 (2012)CrossRefGoogle Scholar
  34. 34.
    H.P. Zhao, C.Y. Jiang, X.M. He, J.G. Ren, C.R. Wan, A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy process. Ionics 14, 113–120 (2008)CrossRefGoogle Scholar
  35. 35.
    X.H. Li, M.Q. Wu, T.T. Feng, Z.Q. Xu, J.G. Qin, C. Chen, C.Y. Tu, D.X. Wang, Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries. RSC Adv. 7, 48286–48293 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.F. Tong, Z. Xu, C. Liu, G.A. Zhang, J. Wang, Z.G. Wu, Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries. J. Power Sour. 247, 78–83 (2014)CrossRefGoogle Scholar
  37. 37.
    Y.F. Wang, L.L. Lv, J. Wang, D. Yan, B.S. Geng, Z.G. Wu, R.F. Zhou, Influence of microstructure on electrochemical properties of Si/C multilayer thin-film anodes deposited using a sputtering method. Mater. Lett. 160, 210–212 (2015)CrossRefGoogle Scholar
  38. 38.
    K. Fu, L.G. Xue, O. Yildiz, S. Li, H. Lee, Y. Li, G.J. Xu, L. Zhou, P.D. Bradford, X.W. Zhang, Effect of CVD carbon coating on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 2, 976–986 (2013)CrossRefGoogle Scholar
  39. 39.
    J.Y. Yu, T. Sun, Q. Yang, J.X. Ma, Porous carbon networks containing Si and SnO2 as high performance anode materials for lithium-ion batteries. Mater. Lett. 184, 169–172 (2016)CrossRefGoogle Scholar
  40. 40.
    Y.D. Huang, Z.F. Dong, D.Z. Jia, Z.P. Guo, W. Cho, Preparation and characterization of core-shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochim. Acta 56, 9233–9239 (2011)CrossRefGoogle Scholar
  41. 41.
    Y.D. Huang, Z.F. Dong, D.Z. Jia, Z.P. Guo, W. Cho, Electrochemical properties of α-Fe2O3 /MWCNTs as anode materials for lithium-ion batteries. Solid State Ion. 201, 54–59 (2011)CrossRefGoogle Scholar
  42. 42.
    Y. Zhou, Q. Liu, D.B. Liu, H. Xie, G.X. Wu, W.F. Huang, Y.F. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W.S. Chu, C.W. Zou, L. Song, Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim. Acta 174, 8–14 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations