Advertisement

Microporous/mesoporous cobalt hexacyanoferrate nanocubes for long-cycle life asymmetric supercapacitors

  • Zhaoxia Song
  • Wei Liu
  • Qing Yuan
  • Quan Zhou
  • Guichang Liu
  • Zhongfu Zhao
Article
  • 21 Downloads

Abstract

Metal hexacyanoferrates with both microporosity and mesoporosity are highly desirable for supercapacitors because efficient transport pathways of metal ions can be provided by mesopores. Here, we have successfully synthesized microporous/mesoporous cobalt hexacyanoferrate (CoHCF) nanocube by tuning the molar ratios of reactants. The CoHCF nanocube is characterized by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption and electrochemical techniques. The results show that the K3[Fe(CN)6]/CoCl2 molar ratios have great influence on texture, morphology and electrochemical performance. The CoHCF nanocube with the average size of around 250 nm has a Brunauer–Emmett–Teller specific surface area of 572 m2 g−1. And the material possesses a specific capacitance as high as 441 F g−1 at 1 A g−1 in 1 M Na2SO4 electrolyte. In addition, an asymmetric supercapacitor is assembled by using the CoHCF nanocube as the positive electrode and activated carbon as the negative electrode. The device exhibits good supercapacitor performance with a specific capacitance of 61.8 F g−1 (1 A g−1) and an energy density of 12.9 Wh kg−1 (632 W kg−1). Long-term cycling stability tests demonstrate that the capacity retains 91% after 6000 charge–discharge cycles.

Notes

Acknowledgements

This work was supported by Natural Science Foundation of Liaoning Province of China (No. 2016010197-301).

Compliance with Ethical Standards

Conflict of interest

Authors declare that they have no conflict of interest.

References

  1. 1.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  2. 2.
    L. Kouchachvili, W. Yaïci, E. Entchev, Hybrid battery/supercapacitor energy storage system for the electric vehicles. J. Power Sources 374, 237 (2018)CrossRefGoogle Scholar
  3. 3.
    E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937 (2001)CrossRefGoogle Scholar
  4. 4.
    J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85 (2018)CrossRefGoogle Scholar
  5. 5.
    J.G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, 1703950 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86 (2017)CrossRefGoogle Scholar
  7. 7.
    Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268 (2017)CrossRefGoogle Scholar
  8. 8.
    C.D. Lokhande, D.P. Dubal, O.S. Joo, Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 11, 255 (2011)CrossRefGoogle Scholar
  9. 9.
    J.G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater Sci. 74, 51 (2015)CrossRefGoogle Scholar
  10. 10.
    J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@polypyrrole core–shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces 10, 18816 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Lisowska-Oleksiak, A.P. Nowak, Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors. J. Power Sources 173, 829 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Chen, K. Huang, S. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes. Electrochem. Commun. 10, 1851 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater. 9, 11 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Aguilà, Y. Prado, E.S. Koumousi, C. Mathonière, R. Clérac, Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni, A. Guerfi, A. Vijh, M. Armand, K. Zaghib, A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 5, 18919 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu, X. Liu, Y. Wu, W. Huang, Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106 (2017)CrossRefGoogle Scholar
  17. 17.
    K. Lu, D. Li, X. Gao, H. Dai, N. Wang, H. Ma, An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe3O4/rGO anode. J. Mater. Chem. A 3, 16013 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Pang, Y. Zhang, T. Cheng, W.Y. Lai, W. Huang, Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale 7, 16012 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, H. Zhong, L. Hu, N. Yan, H. Hu, Q. Chen, Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J. Mater. Chem. A 1, 2621 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242 (2016)CrossRefGoogle Scholar
  21. 21.
    S.T. Senthilkumar, J. Kim, Y. Wang, H. Huang, Y. Kim, Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes. J. Mater. Chem. A 4, 4934 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Jiang, H. Shao, L. Chen, J. Feng, Z. Liu, Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. J. Mater. Chem. A 5, 16740 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Jiang, Y.T. Xu, T. Wang, P.L. Zhu, S. Yu, Y. Yu, X.Z. Fu, R. Sun, C.P. Wong, Nickel hexacyanoferrate flower-like nanosheets coated three dimensional porous nickel films as binder-free electrodes for neutral electrolyte supercapacitors. Electrochim. Acta 166, 157 (2015)CrossRefGoogle Scholar
  24. 24.
    K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, J.H. Lim, K.H. Choi, S.J. Kim, A high-energy aqueous sodium-ion capacitor with nickel hexacyanoferrate and graphene electrodes. Chem. Electro. Chem. 4, 1 (2017)Google Scholar
  25. 25.
    J.G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu, Y. Li, Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl. Mater. Interfaces 6, 11007 (2014)CrossRefGoogle Scholar
  27. 27.
    K. Lu, B. Song, X. Gao, H. Dai, J. Zhang, H. Ma, High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J. Power Sources 303, 347 (2016)CrossRefGoogle Scholar
  28. 28.
    M.S. Wu, L.J. Lyu, J.H. Syu, Copper and nickel hexacyanoferrate nanostructures with graphene coated stainless steel sheets for electrochemical supercapacitors. J. Power Sources 297, 75 (2015)CrossRefGoogle Scholar
  29. 29.
    N.K.A. Venugopal, J. Joseph, Electrochemically formed 3D hierarchical thin films of cobaltemanganese (Co-Mn) hexacyanoferrate hybrids for electrochemical applications. J. Power Sources 305, 249 (2016)CrossRefGoogle Scholar
  30. 30.
    A.A. Ensafi, N. Ahmadi, B. Rezaei, Electrochemical preparation and characterization of a polypyrrole/nickel-cobalt hexacyanoferrate nanocomposite for supercapacitor applications. RSC Adv. 5, 91448 (2015)CrossRefGoogle Scholar
  31. 31.
    P. Xu, G. Wang, H. Wang, Y. Li, C. Miao, J. Qu, Y. Zhang, F. Ren, K. Cheng, K. Ye, K. Zhu, D. Cao, X. Zhang, K2.25Ni0.55Co0.37Fe(CN)6 nanoparticle connected by cross-linked carbon nanotubes conductive skeletons for high-performance energy storage. Chem. Eng. J. 328, 834 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Zou, Q. Wang, C. Xiang, Z. She, H. Chu, S. Qiu, F. Xu, S. Liu, C. Tang, L. Sun, One-pot synthesis of ternary polypyrrole-Prussian-blue-graphene oxide hybrid composite as electrode material for high-performance supercapacitors. Electrochim. Acta 188, 126 (2016)CrossRefGoogle Scholar
  33. 33.
    R.S. Babu, A.L.F. de Barros, M.A. Maier, D.M. Sampaio, J. Balamurugan, J.H. Lee, Novel polyaniline/manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors. Compos. Part B 143, 141 (2018)CrossRefGoogle Scholar
  34. 34.
    M.A. Maier, R.S. Babu, D.M. Sampaio, A.L.F. de Barros, Binder-free polyaniline interconnected metal hexacyanoferrates nanocomposites (metal = Ni, Co) on carbon fibers for flexible supercapacitors. J. Mater. Sci-Mater. El. 28, 17405 (2017)CrossRefGoogle Scholar
  35. 35.
    P. Díaz, Z. González, R. Santamaría, M. Granda, R. Menéndez, C. Blanco, Enhancing energy density of carbon-based supercapacitors using Prussian Blue modified positive electrodes. Electrochim. Acta 212, 848 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Zhang, J. Zhang, Z. Yang, X. Ren, H. Mao, X. Yang, J. Yang, Y. Qian, Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage. Chem. Commun. 53, 10556 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Ma, X. Du, X. Li, X. Hao, A.D. Jagadale, A. Abudula, G. Guan, In situ unipolar pulse electrodeposition of nickel hexacyanoferrate nanocubes on flexible carbon fibers for supercapacitor working in neutral electrolyte. J. Alloys Compd. 695, 294 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Yang, Y. Hao, X. Wang, Q. Yan, J. Yuan, Y. Shao, L. Niu, S. Huang, Controllable synthesis of coaxial nickel hexacyanoferrate/carbon nanotube nanocables as advanced supercapcitors materials. Electrochim. Acta 167, 364 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Sookhakian, W.J. Basirun, M.A.M. Teridi, M.R. Mahmoudian, M. Azarang, E. Zalnezhad, G.H. Yoon, Y. Alias, Prussian blue-nitrogen-doped graphene nanocomposite as hybrid electrode for energy storage applications. Electrochim. Acta 230, 316 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Yang, Y. Hao, J. yuan, L. Niu, F. Xia, In situ co-deposition of nickel hexacyanoferrate nanocubes on the reduced graphene oxides for supercapacitors. Carbon 84, 174 (2015)CrossRefGoogle Scholar
  41. 41.
    J.G. Wang, Z. Zhang, X. Liu, B. Wei, Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor. Electrochim. Acta 235, 114 (2017)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, L. Tao, P. He, X. Zhang, M. He, F. Dong, S. He, C. Li, H. Liu, S. Wang, Y. Zhang, A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors. Electrochim. Acta 259, 793 (2018)CrossRefGoogle Scholar
  43. 43.
    M. Salavati-Niasari, Zeolite-encapsulated nickel(II) complexes with 14-membered hexaaza macrocycle: synthesis and characterization. Inorg. Chem. Commun. 7, 963 (2004)CrossRefGoogle Scholar
  44. 44.
    M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper(II) complexes. Chem. Lett. 34, 244 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Salavati-Niasari, Nanoscale microreactor-encapsulation 14-membered nickel(II) hexamethyl tetraaza: synthesis, characterization and catalytic activity. J. Mol. Catal. A 229, 159 (2005)CrossRefGoogle Scholar
  46. 46.
    M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg. Chem. Commun. 8, 174 (2005)CrossRefGoogle Scholar
  47. 47.
    H. Emadi, M. Salavati-Niasari, Hydrothermal synthesis and characterization of lead sulfide nanocubes through simple hydrothermal method in the presence of [bis(salicylate)lead(II)] as a new precursor. Superlattice Microst. 54, 118 (2013)CrossRefGoogle Scholar
  48. 48.
    M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati–Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel autocombustion synthesis, characterization and considering magnetic property. J. Mater. Sci-Mater. El. 28, 17627 (2017)CrossRefGoogle Scholar
  49. 49.
    X. Li, J. Liu, A.I. Rykov, H. Han, C. Jin, X. Liu, J. Wang, Excellent photo-Fenton catalysts of Fe-Co Prussian blue analogues and their reaction mechanism study. Appl. Catal. B 179, 196 (2015)CrossRefGoogle Scholar
  50. 50.
    R. Chen, Y. Huang, M. Xie, Q. Zhang, X.X. Zhang, L. Li, F. Wu, Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes. ACS Appl. Mater. Interfaces 8, 16078 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270 (2013)CrossRefGoogle Scholar
  52. 52.
    Z. Liu, G. Pulletikurthi, F. Endres, A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 8, 12158 (2016)CrossRefGoogle Scholar
  53. 53.
    K.J. Westin, H.C. Rasmuson, Precipitation of calcium carbonate in the presence of citrate and EDTA. Desalination 159, 107 (2003)CrossRefGoogle Scholar
  54. 54.
    F. Ansari, M. Bazarganipour, M. Salavati-Niasari, NiTiO3/NiFe2O4 nanocomposites: simple sol–gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mat. Sci. Semicon. Proc. 43, 34 (2016)CrossRefGoogle Scholar
  55. 55.
    M. Mahdiani, F. Soofivand, F. Ansari, M. Salavati-Niasari, Grafting of CuFe12O19 nanoparticles on CNT and graphene: ecofriendly synthesis, characterization and photocatalytic activity. J. Clean. Prod. 176, 1185 (2018)CrossRefGoogle Scholar
  56. 56.
    F. Ansari, A. Sobhani, M. Salavati-Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. 514, 723 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, College of Life ScienceDalian Minzu UniversityDalianChina
  2. 2.School of Chemical EngineeringDalian University of TechnologyDalianChina
  3. 3.School of Physics and Materials EngineeringDalian Minzu UniversityDalianChina

Personalised recommendations