Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14883–14889 | Cite as

Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders

  • Li Lv
  • Yan Wang
  • Lin Gan
  • Qian Liu
  • Jian-Ping Zhou
Article

Abstract

Ferroelectric barium titanate is an important traditional ferroelectric and dielectric material. Multilayer ceramic capacitors require nano-sized ceramics in technology. We synthesized nanocrystalline BaTiO3 powders by a hydrothermal method, pressed them into pellets and then, sintered nano sized BaTiO3 ceramics by conventional sintering method (CSM) and two-step sintering (TSS) process for comparison. The internal pore increases with the sintering temperature in the samples sintered with CSM while the samples sintered with TSS route show uniform grains without clear pores. BaTiO3 ceramics sintered with TSS process exhibit tetragonal structure and strong ferroelectric behaviors while those sintered with CSM mainly reveal cubic perovskite properties.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51672168).

References

  1. 1.
    M. Asa, G. Vinai, J.L. Hart, C. Autieri, C. Rinaldi, P. Torelli, G. Panaccione, M.L. Taheri, S. Picozzi, M. Cantoni, Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTiO3. Phys. Rev. Mater. 2, 033401 (2018)CrossRefGoogle Scholar
  2. 2.
    D. Xue, P.V. Balachandran, H. Wu, R. Yuan, Y. Zhou, X. Ding, J. Sun, T. Lookman, Material descriptors for morphotropic phase boundary curvature in lead-free piezoelectrics. Appl. Phys. Lett. 111, 032907 (2017)CrossRefGoogle Scholar
  3. 3.
    W.-B. Li, D. Zhou, L.-X. Pang, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett. 110, 132902 (2017)CrossRefGoogle Scholar
  4. 4.
    J.-P. Ma, X.-M. Chen, W.-Q. Ouyang, J. Wang, H. Li, J.-L. Fang, Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceram. Int. 44, 4436–4441 (2018)CrossRefGoogle Scholar
  5. 5.
    N. Gouitaa, T. Lamcharfi, M. Bouayad, F. Abdi, N. Hadi, Impedance, modulus and conductivity studies of Fe3+ doped BaTiO3 ceramics prepared by solid state method. J. Mater. Sci.: Mater. Electron. 29, 6797–6804 (2018)Google Scholar
  6. 6.
    W.S. Ohm, D. Kim, B.H. Ko, N.C. Park, Control of electromechanical properties of multilayer ceramic capacitors for vibration reduction. J. Am. Ceram. Soc. 101, 1982–1990 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Z. Li, D. Hu, L. Ren, L. Zhai, B. Cui, X. Zhang, S. Wang, Synthesis of fine-grain Ba0.96La0.04TiO3 dielectric ceramics by different routes for multilayer ceramic capacitors. Ceram. Int. 43, 15115–15121 (2017)CrossRefGoogle Scholar
  8. 8.
    A.V. Zanfir, G. Voicu, S.I. Jinga, E. Vasile, V. Ionita, Low-temperature synthesis of BaTiO3 nanopowders. Ceram. Int. 42, 1672–1678 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Özen, M. Mertens, F. Snijkers, G.V. Tendeloo, P. Cool, Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting. Ceram. Int. 42, 5382–5390 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Srilakshmi, R. Saraf, V. Prashanth, G.M. Rao, C. Shivakumara, Structure and catalytic activity of Cr-doped BaTiO3 nanocatalysts synthesized by conventional oxalate and microwave assisted hydrothermal methods. Inorg. Chem. 55, 4795–4805 (2016)CrossRefGoogle Scholar
  11. 11.
    J.M. Han, M.R. Joung, J.S. Kim, Y.S. Lee, S. Nahm, Y.K. Choi, J.H. Paik, E. Suvaci, Hydrothermal synthesis of BaTiO3 nanopowders using TiO2 nanoparticles. J. Am. Ceram. Soc. 97, 346–349 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Vriami, E. Beaugnon, P. Cool, J. Vleugels, O. Van der Biest, Hydrothermally synthesized BaTiO3 textured in a strong magnetic field. Ceram. Int. 41, 5397–5402 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Hai, K. Inukai, Y. Takahashi, N. Izu, T. Akamatsu, T. Itoh, W. Shin, Surfactant-assisted synthesis of mono-dispersed cubic BaTiO3 nanoparticles. Mater. Res. Bull. 57, 103–109 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Li, K. Inukai, Y. Takahashi, W. Shin, Synthesis and size control of monodispersed BaTiO3–PVP nanoparticles. J. Asian Ceram. Soc. 4, 394–402 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Hoshina, Size effect of barium titanate: fine particles and ceramics. J. Ceram. Soc. Jpn. 121, 156–161 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Huan, X. Wang, J. Fang, L. Li, Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 34, 1445–1448 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Huan, X. Wang, J. Fang, L. Li, I.W. Chen, Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J. Am. Ceram. Soc. 96, 3369–3371 (2013)CrossRefGoogle Scholar
  18. 18.
    B. Liu, X. Wang, R. Zhang, L. Li, Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics. J. Am. Ceram. Soc. 100, 3599–3607 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Hu, C. Luo, P. Li, J. Hu, G. Li, H. Jiang, W. Zhang, Effect of sintered temperature on structural and piezoelectric properties of barium titanate ceramic prepared by nano-scale precursors. J. Mater. Sci.: Mater. Electron. 28, 9322–9327 (2017)Google Scholar
  20. 20.
    X. Zhao, W. Liu, W. Chen, S. Li, Preparation and properties of BaTiO3 ceramics from the fine ceramic powder. Ceram. Int. 41, S111–S116 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Dai, X. Hu, R. Yin, W. Bai, F. Wen, J. Deng, L. Zheng, J. Du, P. Zheng, H. Qin, Piezoelectric grain-size effects of BaTiO3 ceramics under different sintering atmospheres. J. Mater. Sci.: Mater. Electron. 28, 7928–7934 (2017)Google Scholar
  22. 22.
    Y. Shi, Y. Pu, Y. Cui, Y. Luo, Enhanced grain size effect on electrical characteristics of fine-grained BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 13229–13235 (2017)Google Scholar
  23. 23.
    M. Legallais, S. Fourcade, U.C. Chung, D. Michau, M. Maglione, F. Mauvy, C. Elissalde, Fast re-oxidation kinetics and conduction pathway in Spark Plasma Sintered ferroelectric ceramics. J. Eur. Ceram. Soc. 38, 543–550 (2018)CrossRefGoogle Scholar
  24. 24.
    P. Ctibor, J. Sedlacek, V. Ryukhtin, J. Cinert, F. Lukac, Barium titanate nanometric polycrystalline ceramics fired by spark plasma sintering. Ceram. Int. 42, 15989–15993 (2016)CrossRefGoogle Scholar
  25. 25.
    F.Q. Guo, B.H. Zhang, Z.X. Fan, X. Peng, Q. Yang, Y.X. Dong, R.R. Chen, Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron. 27, 5967–5971 (2016)Google Scholar
  26. 26.
    H. Guo, J. Guo, A. Baker, C.A. Randall, Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8, 20909–20915 (2016)CrossRefGoogle Scholar
  27. 27.
    J.-P. Maria, X. Kang, R.D. Floyd, E.C. Dickey, H. Guo, J. Guo, A. Baker, S. Funihashi, C.A. Randall, Cold sintering: current status and prospects. J. Mater. Res. 32, 3205–3218 (2017)CrossRefGoogle Scholar
  28. 28.
    Q. Jin, Y. Pu, C. Wang, Z. Gao, Y. Wang, H. Zheng, M. Yao, Microstructure, dielectric properties and energy storage performance of Ba0.4Sr0.6TiO3 ceramics prepared by hydrothermal method and microwave sintering. Mater. Lett. 188, 159–161 (2017)CrossRefGoogle Scholar
  29. 29.
    I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168–171 (2000)CrossRefGoogle Scholar
  30. 30.
    N.J. Lóh, L. Simão, C.A. Faller, A. De Noni, O.R.K. Montedo, A review of two-step sintering for ceramics. Ceram. Int. 42, 12556–12572 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Xu, C.-A. Wang, Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process. J. Eur. Ceram. Soc. 36, 2647–2652 (2016)CrossRefGoogle Scholar
  32. 32.
    J.-P. Zhou, L. Lv, Q. Liu, Y.-X. Zhang, P. Liu, Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Hoshina, S. Wada, Y. Kuroiwa, T. Tsurumi, Composite structure and size effect of barium titanate nanoparticles. Appl. Phys. Lett. 93, 192914 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Sun, S.T. Wang, L. Tong, Q.J. Li, Y. Yu, Y.D. Li, S.G. Huang, Y.M. Guo, C.C. Wang, Enhanced dielectric properties in (In, Nb) co-doped BaTiO3 ceramics. Mater. Lett. 200, 51–54 (2017)CrossRefGoogle Scholar
  35. 35.
    D.-Y. Lu, Y.-Y. Peng, X.-Y. Yu, X.-Y. Sun, Dielectric properties and defect chemistry of La and Tb co-doped BaTiO3 ceramics. J. Alloy. Compd. 681, 128–138 (2016)CrossRefGoogle Scholar
  36. 36.
    Q. Liu, J. Liu, D. Lu, W. Zheng, C. Hu, Structural evolution and dielectric properties of Nd and Mn co-doped BaTiO3 ceramics. J. Alloy. Compd. 760, 31–41 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Information Engineering CollegeShaanxi Fashion Engineering UniversityXi’anPeople’s Republic of China
  2. 2.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China
  3. 3.Shijiazhuang Institute of TechnologyShijiazhuangPeople’s Republic of China

Personalised recommendations