Skip to main content
Log in

Loss evolution of hexagonal Ba0.6Sr0.4La4Ti4O15 microwave dielectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, Ba0.6Sr0.4La4Ti4O15 (BSLT) ceramics with and without the sintering aid (1 wt% ZnO + 0.25 wt% WO3) were synthesized via the solid-state reaction method. Microwave loss evolutions of Ba0.6Sr0.4La4Ti4O15 were investigated emphatically utilizing thermally stimulated depolarization current (TSDC). The sintering behavior, crystal structure and microwave dielectric properties were contrasted mutually. X-ray diffraction confirms that single phase solid solutions are achieved with a hexagonal perovskite structure. And the addition of the sintering aid causes the movement of diffraction peaks to low angles. Due to the incorporation into lattice, the sintering characteristic has not been improved by the sintering aid. With ZnO and WO3, BSLT sintered at 1500 °C demonstrates microwave dielectric properties of εr = 46, Qf = 21,100 GHz and τf = − 4.6 ppm/°C. Especially, the Qf value displays an obvious drop from 48,600 to 21,100 GHz, thus a near zero τf value may be achieved. The extrinsic loss mechanism associated with defects chemistry is explored and TSDC spectra indicate a distinct difference induced by the sintering aid. It can be manifested that the Qf variation originates in the different concentration of oxygen vacancies in host dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Zhang, J. Zhang, Z. Xie, L. Yuan, Z. Yue, L. Li, J. Am. Ceram. Soc. 98, 1245 (2015)

    Article  Google Scholar 

  2. X. Zhang, Z. Yue, B. Peng, Z. Xie, L. Yuan, J. Zhang, L. Li, J. Am. Ceram. Soc. 97, 2921 (2014)

    Article  Google Scholar 

  3. B. Liu, X. Liu, X. Chen, J. Mater. Chem. C 4, 1720 (2016)

    Article  Google Scholar 

  4. D. Zhou, D. Guo, W. Li, L. Pang, X. Yao, D. Wang, I.M. Reaney, J. Mater. Chem. C 4, 5357 (2016)

    Article  Google Scholar 

  5. J. Zhang, Y. Zhou, Z. Yue, X. Zhang, L. Li, J. Am. Ceram. Soc. 98, 3942 (2015)

    Article  Google Scholar 

  6. B. Sun, C. Li, Phys. Chem. Chem. Phys. 17, 6718 (2015)

    Article  Google Scholar 

  7. J. Pei, Z. Yue, F. Zhao, Z. Gui, L. Li, J. Alloys Compd. 459, 390 (2008)

    Article  Google Scholar 

  8. R. Rawal, A. McQueen, L. Gillie, N. Hyatt, E. McCabe, K. Samara, N. Alford, A. Feteira, I. Reaney, D. Sinclair, Appl. Phys. Lett. 94, 192904 (2009)

    Article  Google Scholar 

  9. C. Su, W. Fang, Z. Wei, Y. Tang, L. Fang, J. Am. Ceram. Soc. 97, 3740 (2014)

    Article  Google Scholar 

  10. Y. Tohdo, K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, J. Eur. Ceram. Soc. 26, 2039 (2006)

    Article  Google Scholar 

  11. X. Zhang, J. Zhang, Y. Zhang, Z. Yue, L. Li, J. Mater. Sci.: Mater. Electron. 28, 3400 (2017)

    Google Scholar 

  12. F. Zhao, Z. Yue, J. Pei, H. Zhuang, Z. Gui, L. Li, Appl. Phys. Lett. 89, 202901 (2006)

    Article  Google Scholar 

  13. F. Zhao, Z. Yue, J. Pei, Z. Gui, L. Li, Appl. Phys. Lett. 90, 142908 (2007)

    Article  Google Scholar 

  14. L. Fang, C. Li, X. Peng, C. Hu, B. Wu, H. Zhou, J. Am. Ceram. Soc. 93, 1229 (2010)

    Google Scholar 

  15. F. Zhao, Z. Yue, Z. Gui, L. Li, J. Am. Ceram. Soc. 93, 516 (2010)

    Article  Google Scholar 

  16. W. Courtney, IEEE Trans. Microw. Theory Tech. MMT-18, 476 (1970)

    Article  Google Scholar 

  17. J. Krupka, K. Derzakowski, B. Riddle, J.B. Jarvis, Meas. Sci. Technol. 9, 1751 (1998)

    Article  Google Scholar 

  18. S. Yoon, J. Park, S. Kim, D. Kim, Appl. Phys. Lett. 103, 042901 (2013)

    Article  Google Scholar 

  19. S. Yoon, C. Randall, K. Hury, J. Am. Ceram. Soc. 92, 1766 (2010)

    Article  Google Scholar 

  20. W. Liu, C. Randall, J. Am. Ceram. Soc. 91, 3245 (2008)

    Article  Google Scholar 

  21. X. Zhang, J. Zhang, Y. Zhou, Z. Xie, Z. Yue, L. Li, J. Alloys Compd. 662, 308 (2016)

    Article  Google Scholar 

  22. X. Zhang, L. Zhang, J. Zhang, Z. Xie, L. Yuan, Z. Yue, L. Li, J. Mater. Sci. 50, 1141 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant Nos. 51562015 and 51762025), Young scientist of Jiangxi Province (Grant No. 20153BCB23004), the Landing Plan of Jiangxi Province (Grant No. KJLD14075), the Education Bureau of Jiangxi Province (Nos. GJJ160874, GJJ170769 and JXYJG-2016-106) and State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201709). The author (X.H. Zhang) would like to thank the support of Chinese Scholarship Council and Hundred abroad visiting scholar project of Jiangxi province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, F., Zhang, X., Chen, Y. et al. Loss evolution of hexagonal Ba0.6Sr0.4La4Ti4O15 microwave dielectric ceramics. J Mater Sci: Mater Electron 29, 14858–14864 (2018). https://doi.org/10.1007/s10854-018-9623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9623-x

Navigation