Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14803–14812 | Cite as

Bifunctional urchin-like WO3@PANI electrodes for superior electrochromic behavior and lithium-ion battery

  • Kun Zhang
  • Na Li
  • Yi Wang
  • Xiaoxuan Ma
  • Jiupeng ZhaoEmail author
  • Liangsheng Qiang
  • Shuai Hou
  • Junyi Ji
  • Yao LiEmail author


A improved bifunctional nanostructure composite was designed and fabricated as reversible electrodes for electrochromic film and lithium-ion battery. This unique optic-electro responsive urchin-like architecture assembled from WO3@PANI nanobelts were prepared by solvothermal and electropolymerization methods. As expected, the composite exhibits the superior optical-electrochemical performances. The composite owns quick switching time ranging from purple, green, yellow, gray to blue via voltage regulation, better rate performance and long-term cycling stability in the galvanostatic charge/discharge process. Benefited from stable structure and short diffusion path, it also demonstrates a distinct optical modulation (△T = 45%) and excellent durability after long-term cycles (1200 cycles). The as-prepared electrode exhibits outstanding cycling stability (capacity retention of 516 mAh g−1 after 1200 cycles with a low average fading capacity of ca. 0.103 mAh g−1 and fading cyclic rate of ca. 0.02% per cycle). The long-term stability studies reveal that urchin-like composite has much more excellent optical and electrochemical durability. The morphology and structure of the composite were carried out by characterization equipment. This effective synthesis strategy will have profound implications for developing the other inorganic–organic nanocomposites in optical and electrochemical field.



We thank National Natural Science Foundation of China (Nos. 51572058, 51502057), National Key Rerch & Development Program (2016YFB0303903, 2016YFE0201600), the International Science & Technology Cooperation Program of China (2013DFR10630, 2015DFE52770), and Foundation of Equipment Development (6220914010901).

Supplementary material

10854_2018_9617_MOESM1_ESM.doc (4.9 mb)
Supplementary material 1 (DOC 5050 KB)


  1. 1.
    S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, n-Type WO3 semiconductor as a cathode electrochromic material for ECD devices. J. Mater. Sci.: Mater. Electron. 28, 14446–14452 (2017)Google Scholar
  2. 2.
    L.-C. Yeh, T.-C. Huang, F.-Y. Lai, G.-H. Lai, A.-Y. Lo, S.-C. Hsu, T.-I. Yang, J.-M. Yeh, Synthesis of electroactive polyazomethine and its application in electrochromic property and electrochemical sensor. Surf. Coat. Tech. 303, 154–161 (2016)CrossRefGoogle Scholar
  3. 3.
    J.L. Wang, Y.R. Lu, H.H. Li, J.W. Liu, S.H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139(29), 9921–9926 (2017)CrossRefGoogle Scholar
  4. 4.
    L.L. Xiao, Y. Lv, W.J. Dong, N. Zhang, X.Y. Liu, Dual-functional WO3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties. ACS Appl. Mater. Interfaces 8(40), 27107–27114 (2016)CrossRefGoogle Scholar
  5. 5.
    Q.R. Liu, G.B. Dong, Q.Q. Chen, J.J. Guo, Y. Xiao, M. Ogletree, F. Reniers, X.G. Diao, Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory. Sol. Energy Mater. Sol. C. 174, 545–553 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Bisquert, Analysis of the kinetics of ion intercalation Ion trapping approach to solid-state relaxation processes. Electrochim. Acta 47, 2435–2449 (2002)CrossRefGoogle Scholar
  7. 7.
    G.F. Cai, P. Darmawan, M.Q. Cui, J.X. Wang, J.W. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016)CrossRefGoogle Scholar
  8. 8.
    D.Y. Ma, G.Y. Shi, H.Z. Wang, Q.H. Zhang, Y.G. Li, Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solarheat shielding ability. J. Mater. Chem. A 2, 13541–13549 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Zhang, Y.M. Wang, X.X. Ma, H.C. Zhang, S. Hou, J.P. Zhao, X.G. Li, L.S. Qiang, Y. Li, Three dimensional molybdenum oxide/polyaniline hybrid nanosheet networks with outstanding optical and electrochemical properties. New J. Chem. 41, 10872–10879 (2017)CrossRefGoogle Scholar
  10. 10.
    B.R. Koo, H.J. Ahn, Fast-switching electrochromic properties of mesoporous WO3 electrodes with oxygen vacancy defects. Nanoscale 9, 17788–17793 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Hassab, J. Padilla, Using WO3 as a transparent, optically-passive counter electrode in an unbalanced electrochromic configuration. Electrochem. Commun. 72, 87–90 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Mohammed Harshulkhan, K. Janaki, G. Velraj, R. Sakthi Ganapathy, S. Krishnaraj, Structural and optical properties of Ag doped tungsten oxide (WO3) by microwave-assisted chemical route. J. Mater. Sci.: Mater. Electron. 27, 3158–3163 (2016)Google Scholar
  13. 13.
    L.X. Shen, L.H. Du, S.Z. Tan, Z.G. Zang, C.X. Zhao, W.J. Mai, Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide electrodes and silver nanowires. Chem. Commun. 52, 6296–6299 (2016)CrossRefGoogle Scholar
  14. 14.
    G.S. Bo, X. Wang, K. Wang, R.J. Gao, B.H. Dong, L.X. Cao, G. Su, Preparation and electrochromic performance of NiO/TiO2 nanorod composite electrode. J. Alloy. Compd. 728, 878–886 (2017)CrossRefGoogle Scholar
  15. 15.
    I. Mjejri, A. Rougier, M. Gaudon, Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg. Chem. 56(3), 1734–1741 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Wu, S.Y. Yao, Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 42, 143–150 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Tong, Y.M. Xu, X.L. Cheng, X.F. Zhang, S. Gao, H. Zhao, L.H. Huo, One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance. Electrochim. Acta 210, 147–154 (2016)CrossRefGoogle Scholar
  18. 18.
    S.M. Hicks, A.J. Killard, Electrochemical impedance characterisation of tungsten trioxide-polyaniline nanocomposites for room temperature acetone sensing. Sensor Actuators B 194, 283–289 (2014)CrossRefGoogle Scholar
  19. 19.
    E.J. van den Ham, K. Elen, I. Kokal, B. Yagci, N. Peys, G. Bonneux, F. Ulu, W. Marchal, M.K. Van Bael, A. Hardy, From liquid to thin electrode: colloidal suspensions for tungsten oxide as an electrode material for Li-ion batteries. RSC Adv. 6, 51747–51756 (2016)CrossRefGoogle Scholar
  20. 20.
    B.X. Zou, X.X. Liu, D. Diamond, K.T. Lau, Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate. Electrochim. Acta 55(12), 3915–3920 (2010)CrossRefGoogle Scholar
  21. 21.
    D. Zhou, B.Y. Che, J.H. Kong, X.H. Lu, A nanocrystalline tungsten oxide electrochromic coating with excellent cycling stability prepared via a complexation-assisted sol-gel method. J. Mater. Chem. C 4, 8041–8051 (2016)CrossRefGoogle Scholar
  22. 22.
    S.B. Kulkarni, Y.H. Navale, S.T. Navale, N.S. Ramgir, A.K. Debnath, S.C. Gadkari, S.K. Gupta, D.K. Aswal, V.B. Patil, Enhanced ammonia sensing characteristics of tungsten oxide decorated polyaniline hybrid nanocomposites. Org. Electron. 45, 65–73 (2017)CrossRefGoogle Scholar
  23. 23.
    S.L. Bai, Y.Q. Ma, R.X. Luo, A.F. Chen, D.Q. Li, Room temperature triethylamine sensing properties of polyaniline-WO3 nanocomposites with p-n heterojunctions. RSC Adv. 6, 2687–2694 (2016)CrossRefGoogle Scholar
  24. 24.
    G.F. Cai, J.P. Tu, D. Zhou, J.H. Zhang, X.L. Wang, C.D. Gu, Dual electrochromic electrode based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. C. 122, 51–58 (2014)CrossRefGoogle Scholar
  25. 25.
    X.C. Fang, M.D. Yao, L.Y. Guo, Y.P. Xu, W.W. Zhou, M.P. Zhuo, C. Shi, L.Y. Liu, L.Z. Wang, X.F. Li, W.F. Chen, One-step, solventless, and scalable mechanosynthesis of WO3·2H2O ultrathin narrow nanosheets with superior UV–Vis-light-driven photocatalytic activity. ACS Sustain. Chem. Eng. 5, 10735–10743 (2017)CrossRefGoogle Scholar
  26. 26.
    L.Q. Mai, X.C. Tian, X. Xu, L. Chang, L. Xu, Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114(23), 11828–11862 (2014)CrossRefGoogle Scholar
  27. 27.
    L.Q. Mai, M.Y. Yan, Y.L. Zhao, Track batteries degrading in real time. Nature 546, 469–470 (2017)CrossRefGoogle Scholar
  28. 28.
    H.Y. Zheng, X.B. Huang, Z.Y. Wu, H.Y. Gao, W.J. Dong, G. Wang, Controlled synthesis of 3D flower-like Ni2P composed of mesoporous nanoplates for overall water splitting. Chem. Asian. J. 12, 2956–2961 (2017)CrossRefGoogle Scholar
  29. 29.
    X.T. Ye, L.Y. Chen, L.Y. Liu, Y. Bai, Electrochemical synthesis of selenium nanoparticles and formation of sea urchin-like selenium nanoparticles by electrostatic assembly. Mater. Lett. 196, 381–384 (2017)CrossRefGoogle Scholar
  30. 30.
    K. Qi, J.K. Wei, M.H. Sun, Q.M. Huang, X.M. Li, Z. Xu, W.L. Wang, X.D. Bai, Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy. Angew. Chem. Int. Ed. 54, 15222–15225 (2015)CrossRefGoogle Scholar
  31. 31.
    F.M. Wang, X.Y. Zhan, Z.Z. Cheng, Z.X. Wang, Q.S. Wang, K. Xu, M. Safdar, J. He, Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11(6), 749–755 (2015)CrossRefGoogle Scholar
  32. 32.
    J.H. Sun, X. Shu, Y.L. Tian, Z.F. Tong, S.L. Bai, R.X. Luo, D.Q. Li, A.F. Chen, Preparation of polypyrrole@WO3 hybrids with p-n heterojunction and sensing performance to triethylamine at room temperature. Sensor. Actuators B 238, 510–517 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Najafi-Ashtiani, A. Bahari, S. Ghasemi, A dual electrochromic film based on nanocomposite of aniline and o-toluidine copolymer with tungsten oxide nanoparticles. Org. Electron. 37, 213–221 (2016)CrossRefGoogle Scholar
  34. 34.
    S.L. Bai, Y.W. Ma, R.X. Luo, A.F. Chen, D.Q. Li, Room temperature triethylamine sensing properties of polyaniline-WO3 nanocomposites with p-n heterojunctions. RSC Adv. 6, 2687–2694 (2016)CrossRefGoogle Scholar
  35. 35.
    R. Kumar, B.C. Yadav, Fabrication of polyaniline (PANI)-tungsten oxide (WO3) composite for humidity sensing application. J. Inorg. Organomet. Polym. 26, 1421–1427 (2016)CrossRefGoogle Scholar
  36. 36.
    L.Z. You, B. Liu, T. Liu, B.B. Fan, Y.H. Cai, L. Guo, Y.M. Sun, Organic solar cells based on WO2.72 nanowire anode buffer layer with enhanced power conversion efficiency and ambient stability. ACS Appl. Mater. Interface 9, 12629–12636 (2017)CrossRefGoogle Scholar
  37. 37.
    Z.J. Chen, H.L. Lv, X.F. Zhu, D.D. Li, S.Y. Zhang, X.Y. Chen, Y. Song, Electropolymerization of aniline onto anodic WO3 film: an approach to extend polyaniline electroactivity beyond pH 7. J. Phys. Chem. C 118, 27449–27458 (2014)CrossRefGoogle Scholar
  38. 38.
    J.-W. Geng, Y.-J. Ye, D. Guo, X.-X. Liu, Concurrent electropolymerization of aniline and electrochemical deposition of tungsten oxide for supercapacitor. J. Power Sources 342, 980–989 (2017)CrossRefGoogle Scholar
  39. 39.
    S.W. Cai, H.L. Wen, S.Z. Wang, H.J. Niu, C. Wang, X.K. Jiang, X.D. Bai, W. Wang, Electrochromic polymers electrochemically polymerized from 2, 5-dithienylpyrrole (DTP) with different triarylamine units: synthesis, characterization and optoelectrochemical properties. Electrochim. Acta 228, 332–342 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations