Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14796–14802 | Cite as

Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer

  • Wei ZhengEmail author
  • Yinan Zhang
  • Di Wang
  • Qiming Wang


Quantum dot sensitized solar cell (QDSC) is assembled with CdS/ZnS cosensitized TiO2 photoanode, Pt counter electrode and the polysulfide electrolyte. Since the conduction band of ZnS is higher than that of CdS, ZnS can suppress reversed transformation of electrons and improve the efficiency of electron collection as the passivation layer. The morphology and composition of photoanodes are characterized by XRD, SEM, AFM, EDS and XPS analysis. Results show that CdS and ZnS QDs are covered on the surface of TiO2 porous photoanode successfully to degrade the surface roughness and TiO2 crystal structure has not changed with the introduction of QDs. The photoelectric property of assembled QDSC is analyzed by EIS and J–V curves. The charge recombination at photoanode/electrolyte interface is less likely to occur due to enhanced charge transfer resistance after coating ZnS, leading to a higher power conversion efficiency (PCE) of cells. However, PCE of cell decreases when excessive ZnS QDs are introduced. The photoelectric property of cells sensitized with CdS and ZnS QDs in different cycles is compared and the effect of ZnS incorporated amount on photoelectric property of QDSC is discussed emphatically. It is found that cells sensitized with CdS in seven cycles and ZnS QDs in five cycles exhibit the best photoelectric performance and PCE of which is much higher than that of bare CdS sensitized cell.



This work was supported by the outstanding academic leaders of Harbin (2017RAXXJ078).


  1. 1.
    J.J. Tian, G.Z. Cao, Design fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320321, 193–215 (2016)CrossRefGoogle Scholar
  2. 2.
    I. Mora-Sero, J. Bisquert, Breakthroughs in the development of semiconductor sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010)CrossRefGoogle Scholar
  3. 3.
    J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRefGoogle Scholar
  4. 4.
    S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRefGoogle Scholar
  5. 5.
    J.M. Kim, H. Choi, C. Nahm, C. Kim, J.I. Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H.H. Park, Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1–xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)CrossRefGoogle Scholar
  6. 6.
    G.H. Carey, A.L. Abdelhady, Z.J. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Zhou, L. Wan, H.H. Niu, L. Yang, X.L. Mao, Q.F. Zhang, S.D. Miao, J.Z. Xu, G.Z. Cao, Tailoring band structure of ternary CdSxSe1–x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Zhou, Q.F. Zhang, E. Uchaker, J.L. Lan, M. Yin, G.Z. Cao, Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A 2, 2517–2525 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Zhou, H.H. Niu, Q.F. Zhang, E. Uchaker, Z.Q. Guo, L. Wan, S.D. Miao, J.Z. Xu, G.Z. Cao, Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. J. Mater. Chem. A 3, 12539–12549 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Shen, L. Bian, B. Li, K.B. Zheng, T. Pullerits, J.J. Tian, A structure of CdS/CuxS quantum dots sensitized solar cells. Appl. Phys. Lett. 108, 21 (2016)Google Scholar
  12. 12.
    D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)CrossRefGoogle Scholar
  13. 13.
    C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis and characterization of TiO2/CdS core-shell nanorod arrays and their photoelectrochemical property. J. Alloys Compd. 523, 139–145 (2012)CrossRefGoogle Scholar
  14. 14.
    P. Ardalan, T.P. Brennan, H.B.R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, S.F. Bent, Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. ACS Nano 5, 1495–1504 (2011)CrossRefGoogle Scholar
  15. 15.
    D.W. Jeong, J.Y. Park, T.S. Kim, T.Y. Seong, J.Y. Kim, M.J. Ko, B.S. Kim, Fine tuning of colloidal CdSe quantum dot photovoltaic properties by microfluidic reactors. Electrochim. Acta 222, 1668–1676 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Ratanatawanate, C.R. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)CrossRefGoogle Scholar
  17. 17.
    J.J. Tian, T. Shen, X.G. Liu, C.B. Fei, L.L. Lv, G.Z. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6, 23094 (2016)CrossRefGoogle Scholar
  18. 18.
    S.K. Sarkar, J.Y. Kim, D.N. Goldstein, N.R. Neale, K. Zhu, C.M. Elliot, A.J. Frank, S.M. George, In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J. Phys. Chem. C 114, 8032–8039 (2010)CrossRefGoogle Scholar
  19. 19.
    P.Z. Yang, Q.W. Tang, C.M. Ji, H.B. Wang, A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells. Appl. Surf. Sci. 357, 666–671 (2015)CrossRefGoogle Scholar
  20. 20.
    Y.T. Li, L. Wei, X.Y. Chen et al., Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 1–7 (2013)CrossRefGoogle Scholar
  21. 21.
    C.C. Liu, Z.F. Liu, Y.B. Li et al., CdS/PbS co-sensitized ZnO nanorods and its photovoltaic properties. Appl. Surf. Sci. 257, 7041–7046 (2011)CrossRefGoogle Scholar
  22. 22.
    J.H. Borja, Y.V. Vorobiev, R.R. Bon, Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells. 95, 1882–1887 (2011)CrossRefGoogle Scholar
  23. 23.
    Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Zhou, G.P. Chen, X.L. Zhang, L.Y. Cheng, Y.H. Luo, D.M. Li, Q.B. Meng, Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)CrossRefGoogle Scholar
  25. 25.
    B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer in the heterointerfaces of CuInS2/CdS co-sensitized mesoporous TiO2 photoelectrode. Electrochim. Acta 192, 370–376 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Samadpour, Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol. Energy 144, 63–70 (2017)CrossRefGoogle Scholar
  27. 27.
    Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 8 (2008)Google Scholar
  28. 28.
    M. Marandi, E. Rahmani, F.A. Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)CrossRefGoogle Scholar
  29. 29.
    M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, M.A. Shar, Growth and characterization of layer by layer CdS-ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57–64 (2015)CrossRefGoogle Scholar
  30. 30.
    Z. Wang, X.Z. Wang, X.S. Jiang, J.J. Tao, Z.Z. Gong, Y.L. Cheng, M.A. Zhang, L. Yang, J.G. Lv, G. He, CdS/ZnS co-sensitized hierarchical TiO2 nanotree array with rutile/anatase junctions for enhanced photoelectrochemical performance. J. Electrochem. Soc. 163, H1041–H1046 (2016)CrossRefGoogle Scholar
  31. 31.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)CrossRefGoogle Scholar
  32. 32.
    C.V.V.M. Gopi, M.V. Haritha, S.K. Kim, H.J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 44, 630 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.Centre énergie Matériaux et TélécommunicationsInstitut National de la Recherche ScientifiqueQuebec CityCanada

Personalised recommendations