Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14788–14795 | Cite as

Electrochemical performance of novel mesocarbon microbeads as lithium ion battery anode

  • Qiliang Chen
  • Yi NieEmail author
  • Tao LiEmail author
  • Baozeng Ren
  • Yanxia Liu


Mesocarbon microbeads (MCMB) are known to be one of the most important carbonaceous anode materials. In this study, novel mesocarbon microbeads (NMCMB) were prepared by two-step treatment including thermal polymerization and heat treatment under vacuum, which was then applied as anode materials for lithium ion batteries (LIBs). The morphologies, structures, and other properties of NMCMB were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), thermogravimetric analyses (TGA), Raman spectroscopy, and N2 adsorption–desorption isotherms. The results indicated that NMCMB had rough surface, high specific surface, and better thermal stability. After carbonized, NMCMB have relatively higher disorder degree and bigger interlayer distance. As the anode material of LIBs, NMCMB exhibit better electrochemical performance than MCMB, and provide a high reversible specific capacity of 379 mAh g−1 at a current density of 50 mA g−1, with almost 100% capacity retention for up to 50 cycles at 100 mA g−1, and a good rate performance (256 mAh g−1 at 1 A g−1). This synthetic method paves a new way to improve electrochemical performance of MCMB, which may expand MCMB utilization for LIBs.



This work was financially supported by National Key R& D Program of China (2017YFB0603105), the National Natural Science Foundation of China (No. 21776276 and 21576262), and “Recruitment of Outstanding Technologist” of Chinese Academy of Sciences, the Fund of State Key Laboratory of Multiphase Complex Systems, IPE, CAS (No. MPCS-2015-A-05).

Supplementary material

10854_2018_9615_MOESM1_ESM.doc (15.7 mb)
Supplementary material 1 (DOC 16103 KB)


  1. 1.
    P. Liu, J.R. Kong, Q.C. Liu, S.G. Chen, H.B. Li, Mater. Manuf. Process 29, 403 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Korai, S. Ishida, S.H. Yoon, Y.G. Wang, I. Mochida, Y. Nakagawa, C. Yamaguchi, Y. Matsumura, Y. Sakaic, M. Komatu, Carbon 35, 1503 (1997)CrossRefGoogle Scholar
  3. 3.
    Y.C. Chang, H.J. Sohn, C.H. Ku, Y.G. Wang, Y. Korai, I. Mochida, Carbon 37, 1285 (1999)CrossRefGoogle Scholar
  4. 4.
    L.J. Song, S.S. Liu, B.J. Yu, C.Y. Wang, M.W. Li, Carbon 95, 972 (2015)CrossRefGoogle Scholar
  5. 5.
    M.H. Chen, G.T. Wu, G.M. Zhu, J.K. You, Z.G. Lin, J. Solid. State. Electron. 6, 420 (2002)CrossRefGoogle Scholar
  6. 6.
    N. Imanishi, Y. Ono, K. Hanai, R. Uchiyama, Y. Liu, A. Hirano, Y. Takeda, O. Yamamoto, J. Power. Sources 178, 744 (2008)CrossRefGoogle Scholar
  7. 7.
    Z.H. Li, Q.Y. Li, Y.P. Fang, H.Q. Wang, Y.H. Li, X.Y. Wang, J. Mater. Chem. 21, 17185 (2011)CrossRefGoogle Scholar
  8. 8.
    H.Q. Wang, G.H. Yang, L.S. Cui, Z.S. Li, Z.X. Yan, X.H. Zhang, Y.G. Huang, Q.Y. Li, J. Mater. Chem. A 3, 21298 (2015)CrossRefGoogle Scholar
  9. 9.
    F.H. Li, W.D. Chi, Z.M. Shen, Y.X. Wu, Y.F. Liu, H. Liu, Fuel. Proces. Technol. 91, 17 (2010)CrossRefGoogle Scholar
  10. 10.
    Z.S. Li, Z.H. Liu, D.H. Li, B.L. Li, Q.Y. Li, Y.G. Huang, H.Q. Wang, J. Mater. Sci. Mater. Electron. 26, 353 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, C.H. Yu, Adv. Mater. Res. 750, 1121 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.G. Wang, Y. Korai, I. Mochida, Carbon 37, 1049 (1999)CrossRefGoogle Scholar
  13. 13.
    Y.C. Liu, X.P. Qiu, Y.Q. Huang, W.T. Zhu, Carbon 40, 2375 (2002)CrossRefGoogle Scholar
  14. 14.
    Y.C. Liu, X.P. Qiu, Y.Q. Huang, W.T. Zhu, J. Power. Sources 111, 160 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Zhu, G.H. Zhang, S.Z. Gu, B.A. Lu, Electrochim. Acta 150, 308 (2014)CrossRefGoogle Scholar
  16. 16.
    W.W. Li, S.M. Chen, J. Yu, D.L. Fang, B.Z. Ren, S.J. Zhang, Green Energy Environ. 1, 91 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Thomas, K.Y. Rao, G.M. Rao, Electrochim. Acta 108, 458 (2016)CrossRefGoogle Scholar
  18. 18.
    F.Y. Jiang, Y.Z. Liu, Q. Wang, Y.L. Zhou, J. Mater. Sci. 53, 2127 (2018)CrossRefGoogle Scholar
  19. 19.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, X.D. Yan, Y.H. Yu, X.P. Yang, J. Mater. Chem. A 3, 20880 (2015)CrossRefGoogle Scholar
  21. 21.
    P.X. Han, Y.H. Yue, L.X. Zhang, Y.Z. Wang, Carbon 50, 1355 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Yao, G.X. Wang, J.H. Ahn, H.K. Liu, S.X. Dou, J. Power. Sources 114, 292 (2003)CrossRefGoogle Scholar
  23. 23.
    G.X. Wang, J. Yao, H.K. Liu, Electrochem. Solid. State Lett. 7, A250 (2004)CrossRefGoogle Scholar
  24. 24.
    T.Q. Li, C.Y. Wang, X.J. Liu, Sci. Bull. 49, 1105 (2004)CrossRefGoogle Scholar
  25. 25.
    K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mahuchi, H. Fujimoto, Cheminform 142, 716 (1995)Google Scholar
  26. 26.
    G.H. Yang, Z.X. Yan, H.Q. Wang, X.M. Wu, Z.Q. He, Q.Y. Li, Y.G. Huang, Z.S. Li, Electrochim. Acta 210, 662 (2016)CrossRefGoogle Scholar
  27. 27.
    M.S. Wu, Y.H. Fu, Nanoscale 6, 4195 (2014)CrossRefGoogle Scholar
  28. 28.
    S.B. Yang, H.H. Song, X.H. Chen, Electrochem. Commun. 8, 137 (2006)CrossRefGoogle Scholar
  29. 29.
    G.Y. Zhao, Z.H. Wei, N.Q. Zhang, K.N. Sun, Mater. Lett. 89, 243 (2012)CrossRefGoogle Scholar
  30. 30.
    D.D. Zhao, Q. Ru, S.J. Hu, X.H. Hou, Ionics 23, 897 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Fei, Y. Xu, X.F. Wu, G. Chen, Y.L. Li, B.S. Li, S.G. Deng, S. Smirnov, H.Y. Fan, H.M. Luo, Nanoscale 6, 3664 (2014)CrossRefGoogle Scholar
  32. 32.
    Y.X. Wang, Y.W. Wang, J.L. Liu, L. Pan, W. Tian, M.B. Wu, J.S. Qiu, Carbon 122, 344 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Badenhorst, Carbon 66, 674 (2014)CrossRefGoogle Scholar
  34. 34.
    J.D. Zhu, C. Chen, Y. Lu, Y.Q. Ge, H. Jiang, K. Fu, X.W. Zhang, Carbon 94, 189 (2015)CrossRefGoogle Scholar
  35. 35.
    T.P. Kumar, T.S.D. Kumari, A.M. Stephan, J. Electrochem. Soc. 89, A1335 (2009)Google Scholar
  36. 36.
    F.D. Han, Y.J. Bai, R. Liu, B. Yao, Y.X. Qi, N. Lun, J.X. Zhang, Adv. Energy Mater. 1, 798 (2011)CrossRefGoogle Scholar
  37. 37.
    P.Y. Zhao, J.J. Tang, C.Y. Wang, J. Solid. State. Electron. 21, 555 (2017)CrossRefGoogle Scholar
  38. 38.
    K. Tang, R.J. White, X.K. Mu, M.M. Titirici, P.A. Aken, J. Maier, Chemsuschem 5, 400 (2012)CrossRefGoogle Scholar
  39. 39.
    S.B. Yang, H.H. Song, X.H. Chen, A.V. Okotrub, L.G. Bulusheva, Electrochim. Acta 52, 5286 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power. Sources 159, 717 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina
  2. 2.Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Zhengzhou Institute of Emerging Technology IndustriesZhengzhouChina

Personalised recommendations