Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14762–14773 | Cite as

Investigation of C60 and C70 fullerenes under low energy ion impact

  • Rahul SinghalEmail author
  • Jyotsna Bhardwaj
  • Ritu Vishnoi
  • Amit Sharma
  • Ganesh D. Sharma
  • D. Kanjilal


The increasing need of fullerenes due to its interesting properties makes it a unique molecule of the current research field. The replacement of fullerene C60 by C70 in various applications makes us to feel more intended towards the knowledge of its structural and optical behaviour under various perturbations. In the present study, the stability of fullerenes (C60 and C70) under low energy ion irradiation is investigated. Both C60 and C70 fullerene thin films were grown on glass substrate and bombarded with 2.4 MeV Ar ions at different fluences ranging from 1 × 1013 to 3 × 1016 ions/cm2. The surface morphology and topology of these films were studied by scanning electron microscopy and atomic force microscopy. The microscopic analysis shows the increase in roughness at low fluence and then roughness decreases at high fluences. At the highest fluence, the roughness of both C60 and C70 becomes equal. Various spectroscopic analysis conducted on irradiated fullerene C60 and C70 thin films show that the bandgap decreases with the increase in fluence. In case of C70 bandgap decreases to 1.6 eV which gives more allowed HOMO–LUMO transitions as compared to fullerene C60. This decrease in bandgap tends to increase the conductivity of the fullerene molecule, hence I–V measurements were performed which shows the decrease in the resistivity of both the fullerene thin films. Raman spectrum reveals the transformation of ball shaped fullerenes into amorphous carbon at higher fluences. The different vibrations in the fullerene molecule are also studied by FTIR spectroscopy. These characteristic traits of both the fullerene are studied giving the idea of the local structure and optical behaviour of the molecule as a matrix component in the metal-matrix nanocomposites.



The authors are thankful to the staff of Low Energy Ion Beam Facility at Inter University Accelerator Centre, New Delhi for providing us the stable ion beam. Authors are thankful to Materials Research Centre (MRC), MNIT, Jaipur for providing experimental characterization facilities. R. Singhal and Jyotsna Bhardwaj are also thankful to CSIR New Delhi (Ref: 03(1408)/17/EMR-II) and DST New Delhi (EMR/2016/005208) for their financial support to carry out the experimental research work. The help of Ms. Pooja Sharma (PhD scholar, MNIT Jaipur) during synthesis of films and Mr. Kedar Nath at LEIBF facility, IUAC New Delhi during irradiation of films is also acknowledged. Jyotsna Bhardwaj acknowledges the fellowship from IUAC New Delhi (UFR-62303).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    I. Yamada, Nucl. Instrum. Methods Phys. Res. B 148, 1 (1999)CrossRefGoogle Scholar
  2. 2.
    B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Phys. Rev. B 72, 1 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Kolíbal, T. Matlocha, T. Vystavěl, T. Sikola, Nanotechnology 22, 1 (2011)CrossRefGoogle Scholar
  4. 4.
    I.P. Jain, G. Agarwal, Surf. Sci. Rep. 66, 77 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Höhler, J.H. Kühn, T. Müller, J. Trümper, A. Ruckenstein, P. Wölfle, Springer Tracts in Modern Physics Managing Editor Elementary Particle Physics, Editors Solid-State Physics, Editors (n.d.)Google Scholar
  6. 6.
    P.C. Eklund, A.M. Rao, Y. Wang, P. Zhou, K.A. Wang, J.M. Holden, M.S. Dresselhaus, G. Dresselhaus, Thin Solid Films 257, 211 (1995)CrossRefGoogle Scholar
  7. 7.
    M. Randi, D. Vuki 79, 471 (2006)Google Scholar
  8. 8.
    E. Ulloa, Introduction to Nanotechnology, vol. 1, EEE-5425 (2013)Google Scholar
  9. 9.
    B.C. Thompson, J.M.J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2008)CrossRefGoogle Scholar
  10. 10.
    E.Y. Kolyadina, L.A. Matveeva, P.L. Neluba, V.V. Shlapatskaya, Materwiss. Werksttech. 44, 144 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.P. Sun, J.E. Riggs, B. Liu, Chem. Mater. 9, 1268 (1997)CrossRefGoogle Scholar
  12. 12.
    S. Bosi, T. Da Ros, G. Spalluto, M. Prato, Eur. J. Med. Chem. 38, 913 (2003)CrossRefGoogle Scholar
  13. 13.
    R. Singhal, D.C. Agarwal, Y.K. Mishra, F. Singh, J.C. Pivin, R. Chandra, D.K. Avasthi, J. Phys. D 42, (2009)Google Scholar
  14. 14.
    R. Singhal, P. Sharma, R. Vishnoi, D.K. Avasthi, J. Alloys Compd. 696, 9 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Vishnoi, R. Singhal, K. Asokan, D. Kanjilal, D. Kaur, Thin Solid Films 520, 1631–1637 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Singhal, D.C. Agarwal, Y.K. Mishra, F. Singh, J.C. Pivin, R. Chandra, D.K. Avasthi, J. Phys. D 42, 155103 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Vishnoi, R. Singhal, K. Asokan, D. Kanjilal, D. Kaur, Appl. Phys. A 107, 925 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Singhal, R. Vishnoi, K. Asokan, D. Kanjilal, D. Kaur, Vacuum 89, 215–219 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Vishnoi, R. Singhal, K. Asokan, J.C. Pivin, D. Kanjilal, D. Kaur, Vacuum 89, 190–196 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Singhal, R. Vishnoi, H. Inani, P. Sharma, K.K. Venkataratnam, D.K. Avasthi, Plasmonics 12, 1701 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Singhal, R. Vishnoi, P. Sharma, H. Inani, G.D. Sharma, J.C. Pivin, Surf. Coat. Technol. 324, 361 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Inani, R. Singhal, P. Sharma, R. Vishnoi, S. Ojha, S. Chand, G.D. Sharma, Nucl. Instrum. Methods Phys. Res. B 407, 73 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Inani, R. Singhal, P. Sharma, R. Vishnoi, S. Aggarwal, G.D. Sharma, Vacuum 142, 5 (2017)CrossRefGoogle Scholar
  24. 24.
    R. Singhal, S. Gupta, R. Vishnoi, S. Aggarwal, G.D. Sharma, A. Sharma, S. Ojha, Mater. Res. Express 5, 35044 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Thomé, A. Debelle, F. Garrido, S. Mylonas, B. Décamps, C. Bachelet, G. Sattonnay, S. Moll, S. Pellegrino, S. Miro, P. Trocellier, Y. Serruys, G. Velisa, C. Grygiel, I. Monnet, M. Toulemonde, P. Simon, J. Jagielski, I. Jozwik-Biala, L. Nowicki, M. Behar, W.J. Weber, Y. Zhang, M. Backman, K. Nordlund, F. Djurabekova, Nucl. Instrum. Methods Phys. Res. B 307, 43 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Singhal, J.C. Pivin, D.K. Avasthi, J. Nanopart. Res. 15, 1641 (2013)CrossRefGoogle Scholar
  27. 27.
    R. Singhal, F. Singh, A. Tripathi, D.K. Avasthi, Radiat. Eff. Defects Solids 164, 38 (2009)CrossRefGoogle Scholar
  28. 28.
    R. Singhal, A. Kumar, Y.K. Mishra, S. Mohapatra, J.C. Pivin, D.K. Avasthi, Nucl. Instrum. Methods Phys. Res. B 266, 3257 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Sharma, R. Singhal, R. Vishnoi, R. Kaushik, M.K. Banerjee, D.K. Avasthi, V. Ganesan, Vacuum 123, 35 (2016)CrossRefGoogle Scholar
  30. 30.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)CrossRefGoogle Scholar
  31. 31.
    D.S. Bethune, G. Meijer, W.C. Tang, H.J. Rosen, W.G. Golden, H. Seki, C.A. Brown, M.S. de Vries, Chem. Phys. Lett. 179, 181 (1991)CrossRefGoogle Scholar
  32. 32.
    P.R. Griffiths, Vib. Spectrosc. 4, 121 (1992)CrossRefGoogle Scholar
  33. 33.
    M.S. Dresselhaus, G. Dresslhaus, Annu. Rev. Mater. Sci. 25, 487 (1995)CrossRefGoogle Scholar
  34. 34.
    R.A. Jishi, R.M. Mirie, M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Phys. Rev. B 48, 5634 (1993)CrossRefGoogle Scholar
  35. 35.
    M.S. Amer, Raman Spectroscopy, Fullerenes and Nanotechnology (RSC Publishing, Cambridge, 2010)Google Scholar
  36. 36.
    R. Singhal, D. Kabiraj, P.K. Kulriya, J.C. Pivin, R. Chandra, D.K. Avasthi, Plasmonics 8, 295 (2013)CrossRefGoogle Scholar
  37. 37.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  38. 38.
    C. Mapelli, C. Castiglioni, G. Zerbi, K. Müllen, Phys. Rev. B 60, 12710 (1999)CrossRefGoogle Scholar
  39. 39.
    A. Yogo, T. Majaima, A. Itoh, Nucl. Instr. Meth. Phys. Res. B 193, 299 (2002)CrossRefGoogle Scholar
  40. 40.
    F. Cataldo, G. Baratta, Fullerenes, Nanotub. Carbon Nanostruct. 11, 191 (2003)CrossRefGoogle Scholar
  41. 41.
    G. Sun, M. Kertesz, J. Phys. Chem. A 106, 6381 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Fan, D. Dai, B. Huang, Fourier Transform Mater. Anal. 3, 45 (2012)Google Scholar
  43. 43.
    J. Page, J. Menendez, Light Scattering in Solids VIII (Springer, Berlin, 2000), p. 27Google Scholar
  44. 44.
    L.E. Amand, C.J. Tullin, The Theory Behind FTIR Analysis, vol. 1 (Department of Energy Conversion, Chalmers University of Technology, Sweden, 1999)Google Scholar
  45. 45.
    P. Beauchamp, Course Notes 2620, 19 (2010)Google Scholar
  46. 46.
    R. Singhal, J. Bhardwaj, R. Vishnoi, S. Aggarwal, G.D. Sharma, J.C. Pivin, J. Phys. Chem. Solids 117, 204–214 (2018)CrossRefGoogle Scholar
  47. 47.
    W. Zhou, S. Xie, S. Qian, T. Zhou, R. Zhao, G. Wang, L. Qian, W. Li, J. Appl. Phys. 80, 459 (1996)CrossRefGoogle Scholar
  48. 48.
    K. Harigaya, S. Abe, J. Phys. Condens. Matter 8, 8057 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rahul Singhal
    • 1
    Email author
  • Jyotsna Bhardwaj
    • 1
  • Ritu Vishnoi
    • 1
  • Amit Sharma
    • 2
  • Ganesh D. Sharma
    • 3
  • D. Kanjilal
    • 4
  1. 1.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia
  2. 2.Materials Research CentreMalaviya National Institute of TechnologyJaipurIndia
  3. 3.Department of PhysicsThe LNM Institute of Information TechnologyJamdoli, JaipurIndia
  4. 4.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations