Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14746–14761 | Cite as

Effect of Cu2+ substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property

  • Chandan C. Naik
  • S. K. Gaonkar
  • I. Furtado
  • A. V. SalkerEmail author


Cu2+ substituted cobalt ferrite represented chemically as Co1−xCuxFe2O4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25) was prepared by the sol–gel assisted auto-combustion process using malic acid as a complexing agent. The auto-combusted sample was investigated using thermal analyzer, and accordingly, thermal treatments were given to the samples. The concentration of metal ions present was estimated using ICP-AES technique. Evaluation of transmission electron microscopy and scanning electron microscopy results indicate the homogenous distribution of particles along with agglomeration. X-ray photoelectron spectroscopy studies confirm the existence of elements in their respective oxidation states. Raman and Infrared spectroscopy were employed to shed light on the vibrational modes of the spinel ferrites. Magnetic properties determined from vibrating sample magnetometer at 50 K shows a significant increase in saturation magnetization (Ms) and coercivity (Hc) as compared to 300 K. While, the substitution of Cu2+ ions showed a marginal decrease in Ms and Hc at individual temperatures. The drop in Curie temperature (Tc) with Cu2+ content indicates the weakening in the strength of the overall A–B super-exchange interaction. The dielectric properties have been determined as a function of frequency and temperature. Antimicrobial tests performed, indicated that the Cu2+ content in CoFe2O4 significantly influenced the activity against both Gram-positive and Gram-negative pathogenic microbes.



Authors are thankful to UGC BSR New Delhi for financial support. Authors are grateful to the Department of Microbiology; Goa Medical College; Goa for providing microbial cultures.

Supplementary material

10854_2018_9611_MOESM1_ESM.docx (796 kb)
Supplementary material 1 (DOCX 795 KB)


  1. 1.
    M. Kucera, P. Brom, J. Appl. Phys. 117, 17B738 (2015)CrossRefGoogle Scholar
  2. 2.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, B. Al-Najar, J. Phys. Chem. Solids 115, 162 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Ind. Eng. Chem. Res. 51, 11700 (2012)CrossRefGoogle Scholar
  4. 4.
    W. Zhang, B. Quan, C. Lee, S.K. Park, X. Li, E. Choi, G. Diao, Y. Piao, ACS Appl. Mater. Interfaces 7, 2404 (2015)CrossRefGoogle Scholar
  5. 5.
    M.A. Haija, A.I. Ayesh, S. Ahmed, M.S. Katsiotis, Appl. Surf. Sci. 369, 443 (2016)CrossRefGoogle Scholar
  6. 6.
    E. Amini, M. Rezaei, M. Sadeghinia, Chin. J. Catal. 34, 1762 (2013)CrossRefGoogle Scholar
  7. 7.
    L.K. Wu, H. Wu, H.Bin Zhang, H.Z. Cao, G.Y. Hou, Y.P. Tang, G.Q. Zheng, Chem. Eng. J. 334, 1808 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Kimura, T. Mashino, T. Hiroki, D. Shigeoka, N. Sakai, L. Zhu, Thermochim. Acta 532, 119 (2012)CrossRefGoogle Scholar
  9. 9.
    N. Velinov, K. Koleva, T. Tsoncheva, D. Paneva, E. Manova, B. Kunev, I. Mitov, Cent. Eur. J. Chem. 12, 11 (2013)Google Scholar
  10. 10.
    S. Muthurani, M. Balaji, S. Gautam, K.H. Chae, J. Song, D.P. Padiyan, K. Asokan, J. Nanosci. Nanotechnol. 11, 5850 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Briceño, H. Del Castillo, V. Sagredo, W. Bramer-Escamilla, P. Silva, Appl. Surf. Sci. 263, 100 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Ma, Y. Chen, L. Li, D. Jiang, R. Qiao, Y. Zhu, Mater. Lett. 131, 38 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Allafchian, S.A.H. Jalali, H. Bahramian, H. Ahmadvand, J. Magn. Magn. Mater. 404, 14 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Ansari, A. Bigham, S.A. Hassanzadeh-Tabrizi, H. Abbastabar, Ahangar, J. Magn. Magn. Mater. 439, 67 (2017)CrossRefGoogle Scholar
  15. 15.
    R.K. Ganta, A. Ramgopal, C. Ramesh, K.R. Babu, M.M. Krishna, Kumar, B.V. Rao, Synth. Commun. 46, 1999 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Acta Biomater. 9, 5830 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Samavati, A.F. Ismail, Particuology 30, 158 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Bauer, W. Kirby, J. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493 (1966)CrossRefGoogle Scholar
  19. 19.
    D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Spectrochim. Acta A 132, 256 (2014)CrossRefGoogle Scholar
  20. 20.
    R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, J. Appl. Phys. 110, 053910 (2011)CrossRefGoogle Scholar
  21. 21.
    M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, A. Genson, S. Hampshire, Mater. Charact. 60, 73 (2009)CrossRefGoogle Scholar
  22. 22.
    K.N. Harish, H.S. Bhojya Naik, P.N. Prashanth, Kumar, R. Viswanath, ACS Sustain. Chem. Eng. 1, 1143 (2013)CrossRefGoogle Scholar
  23. 23.
    S.G. Kakade, R.C. Kambale, C.V. Ramanna, Y.D. Kolekar, RSC Adv. 6, 33308 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011)CrossRefGoogle Scholar
  25. 25.
    S.R. Naik, A.V. Salker, J. Mater. Chem. 22, 2740 (2012)CrossRefGoogle Scholar
  26. 26.
    Z. Gu, X. Xiang, G. Fan, F. Li, J. Phys. Chem. C 112, 18459 (2008)CrossRefGoogle Scholar
  27. 27.
    R. Tholkappiyan, K. Vishista, Physica B 448, 177 (2014)CrossRefGoogle Scholar
  28. 28.
    S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, J. Alloys Compd. 566, 54 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Vadivel, R. Ramresh, B.R. Arivanandhan, J. Supercond. Nov. Magn. 30, 441 (2016)Google Scholar
  30. 30.
    V. Luca, S. Djajanti, R.F. Howe, J. Phys. Chem. B 102, 10650 (1998)CrossRefGoogle Scholar
  31. 31.
    C. Singh, S. Bansal, V. Kumar, K.B. Tikko, S. Singhal, RSC Adv. 5, 39052 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Chandra Sekhar, G.S.N. Rao, O.F. Caltun, B. Dhana Lakshmi, B. Parvatheeswara Rao, P.S.V. Subba Rao, J. Magn. Magn. Mater. 398, 59 (2016)CrossRefGoogle Scholar
  33. 33.
    C. Cao, L. Zhang, S. Ren, J. Mater. Sci. Mater. Electron. 25, 2578 (2014)CrossRefGoogle Scholar
  34. 34.
    J. Balavijayalakshmi, N. Suriyanarayanan, R. Jayapraksah, Mater. Lett. 81, 52 (2012)CrossRefGoogle Scholar
  35. 35.
    K. Li, K. Sun, C. Chen, X. Liu, R. Guo, H. Liu, Z. Yu, X. Jiang, Z. Lan, J. Alloys Compd. 752, 395 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Bahiraei, M. Zargar, K. Gheisari, C.K. Ong, J. Magn. Magn. Mater. 371, 29 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Ul-Islam, T. Abbas, M. Ashraf, Chaudhry, Mater. Lett. 53, 30 (2002)CrossRefGoogle Scholar
  38. 38.
    G.R. Kumar, Y.C. Venudhar, A.T. Raghavender, K.V. Kumar, J. Korean Phys. Soc. 60, 1082 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)Google Scholar
  40. 40.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  41. 41.
    R. Pandit, K.K. Sharma, P. Kaur, R. Kumar, Mater. Chem. Phys. 148, 988 (2014)CrossRefGoogle Scholar
  42. 42.
    P.S. Das, G.P. Singh, J. Magn. Magn. Mater. 401, 918 (2016)CrossRefGoogle Scholar
  43. 43.
    R.V. Mangalaraja, P. Manohar, F.D. Gnanam, J. Mater. Sci. 9, 2037 (2004)CrossRefGoogle Scholar
  44. 44.
    M.T. Rahman, M. Vargas, C.V. Ramana, J. Alloys Compd. 617, 547 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Vincent, P. Hartemann, M. Engels-Deutsch, Int. J. Hyg. Environ. Health 219, 585 (2016)CrossRefGoogle Scholar
  46. 46.
    R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Nano Lett. 6, 866 (2006)CrossRefGoogle Scholar
  47. 47.
    J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, Nanotechnology 16, 2346 (2005)CrossRefGoogle Scholar
  48. 48.
    A.K. Chatterjee, R. Chakraborty, T. Basu, Nanotechnology 25, 135101 (2014)CrossRefGoogle Scholar
  49. 49.
    R. Hong, T.Y. Kang, C.A. Michels, N. Gadura, Appl. Environ. Microbiol. 78, 1776 (2012)CrossRefGoogle Scholar
  50. 50.
    R. Trevejo, M. Barr, R. Robinson, Vet. Res. 36, 493 (2005)CrossRefGoogle Scholar
  51. 51.
    K. Gurleen, R. Savio, J. Dent. Med. Sci. 15, 47 (2016)Google Scholar
  52. 52.
    U. Kamat, A. Fereirra, D. Amonkar, D. Motghare, M. Kulkarni, Indian J. Urol. 25, 76 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chandan C. Naik
    • 1
  • S. K. Gaonkar
    • 2
  • I. Furtado
    • 2
  • A. V. Salker
    • 1
    Email author
  1. 1.Department of ChemistryGoa UniversityTaleigao PlateauIndia
  2. 2.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations