Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14705–14709 | Cite as

Microwave dielectric properties of the low-temperature-fired Li2ZnTi3O8–Li2TiO3 ceramics for LTCC applications

  • Tong lei
  • Jiawang Chen
  • Zhiqiang Xu
  • Hua Su
  • Yuanxun Li
  • Xiaoli TangEmail author


In this work, 0.73Li2ZnTi3O8–0.27Li2TiO3 ceramics were prepared through a traditional solid-state process. The effects of Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) glass addition on phase formation, microstructure, sintering characteristic and microwave dielectric properties of the ceramics were investigated. A small amount of LBSCA glass addition significantly reduced sintering temperature of the ceramics. X-ray diffraction analysis revealed that Li2ZnTi3O8 and Li2TiO3 phases coexisted without producing any other crystal phases in the sintered ceramics. Dielectric constant and Qf values were related to the amount of LBSCA addition and sintering temperatures. The specimens obtained near-zero temperature coefficient (τf) values through the compensation on the positive τf of Li2TiO3 and the negative τf of Li2ZnTi3O8. The 0.73Li2ZnTi3O8–0.27Li2TiO3 ceramic with 0.75 wt% LBSCA addition and sintered at 900 °C for 3 h exhibited excellent microwave dielectric properties of ɛr = 23.907, Qf = 63050 GHz and τf = 1.2 ppm/°C, which was very suitable for LTCC (low temperature co-fired ceramics) applications.



This work was supported by the National Natural Science Foundation of China under Grant Nos. 61471096 and 61771104 and Sichuan science and technology program. Special Projects on Science and Technology of Guizhou Province [2016]3011. And Dongguan entrepreneurial talent program.


  1. 1.
    P. Kumari, P. Tripathi, O. Parkash, D. Kumar, Low temperature sintering and characterization of MgO-B2O3-SiO2 glass-ceramics for LTCC substrate applications. Trans. Indian Ceram. Soc. 75, 229–233 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Lai, C. Hong, L. Jin, X. Tang, H. Zhang, X. Huang, J. Li, H. Su, Temperature stability and high-Qf of low temperature firing Mg2SiO4-Li2TiO3 microwave dielectric ceramics. Ceram. Int. 43, 16167–16173 (2017)CrossRefGoogle Scholar
  3. 3.
    C.C. Xia, G.H. Chen, C.L. Yuan, C.R. Zhou, Low-temperature co-fired LiMnPO4–TiO2 ceramics with near-zero temperature coefficient of resonant frequency. J. Mater. Sci.: Mater. Electron. 28, 13970–13975 (2017)Google Scholar
  4. 4.
    H. Zhou, J. Huang, X. Tan, N. Wang, G. Fan, X. Chen, Compatibility with silver electrode and microwave dielectric properties of low firing CaWO4-2Li2WO4 ceramics. Mater. Res. Bull. 89, 150–153 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, Microwave dielectric properties and chemical compatibility with silver electrode of Li2TiO3 ceramic with Li2O–ZnO–B2O3 glass additive. Physica B 457, 57–61 (2015)CrossRefGoogle Scholar
  6. 6.
    N.-X. Xu, J.-H. Zhou, H. Yang, Q.-L. Zhang, M.-J. Wang, L. Hu, Structural evolution and microwave dielectric properties of MgO–LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40, 15191–15198 (2014)CrossRefGoogle Scholar
  7. 7.
    J.-X. Xu, X.Y. Zhang, C. High-Isolation, LTCC Diplexer using common stub-loaded resonator with controllable frequencies and bandwidths. IEEE Trans. Microw. Theory Tech. 65, 4636–4644 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Li, Y. Xie, R. Chen, L. Han, D. Chen, H. Su, A multilayer power inductor fabricated by cofirable ceramic/ferrite materials with LTCC technology. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 1402–1409 (2017)CrossRefGoogle Scholar
  9. 9.
    X.Y. Zhang, X.-F. Liu, Y.C. Li, W.-L. Zhan, Q.Y. Lu, J.-X. Chen, LTCC out-of-phase filtering power divider based on multiple broadside coupled lines. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 777–785 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Feng, X. Gao, W. Che, W. Yang, Q. Xue, LTCC wideband bandpass filters with high performance using coupled lines with open/shorted stubs. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 602–609 (2017)CrossRefGoogle Scholar
  11. 11.
    D. Zhou, L.-X. Pang, D.-W. Wang, C. Li, B.-B. Jin, I.M. Reaney, High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 5, 10094–10098 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Zhou, D. Guo, W.-B. Li, L.-X. Pang, X. Yao, D.-W. Wang, I.M. Reaney, Novel temperature stable high-εr microwave dielectrics in the Bi2O3–TiO2–V2O5 system. J. Mater. Chem. C 4, 5357–5362 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Zhou, N. Wang, X. Tan, J. Huang, X. Chen, Glass-free Li2ZnTi3O8 low temperature cofired ceramics by pretreating raw materials. J. Mater. Sci.: Mater. Electron. 27, 11850–11855 (2016)Google Scholar
  14. 14.
    L.-X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3-CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRefGoogle Scholar
  15. 15.
    Z. Ding, H. Su, X. Tang, H. Zhang, B. Liu, Low-temperature-sintering characteristic and microwave dielectric properties of (Zn0.7Mg0.3)TiO3 ceramics with LBSCA glass. Ceram. Int. 41, 10133–10136 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Zhang, H. Su, H.W. Zhang, Y.L. Jing, X.L. Tang, Microwave dielectric properties of CaWO4-Li2TiO3 ceramics added with LBSCA glass for LTCC applications. Ceram. Int. 42, 15242–15246 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Bari, E. Taheri-Nassaj, H. Taghipour-Armaki, Phase evolution, microstructure, and microwave dielectric properties of reaction-sintered Li2ZnTi3O8 ceramic obtained using nanosized TiO2 reagent. J. Electron. Mater. 44, 3670–3676 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, D. Zhou, J. Guo, L.-X. Pang, H. Wang, X. Yao, Temperature stable microwave dielectric ceramic 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss. Mater. Lett. 65, 2680–2682 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Chen, H. Su, H. Zhang, Y. Gui, H. Zuo, L. Yang, X. Tang, Low temperature sintering and microwave dielectric properties of the LBSCA-doped (Zn0.95Co0.05)2SiO4 ceramics. J. Mater. Sci.: Mater. Electron. 26, 2820–2823 (2015)Google Scholar
  21. 21.
    J. Bi, Y. Niu, H. Wu, Li4Mg3Ti2O9: a novel low-loss microwave dielectric ceramic for LTCC applications. Ceram. Int. 43, 7522–7530 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tong lei
    • 1
  • Jiawang Chen
    • 2
  • Zhiqiang Xu
    • 1
    • 2
  • Hua Su
    • 1
    • 2
  • Yuanxun Li
    • 1
    • 2
  • Xiaoli Tang
    • 1
    Email author
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Dongguan Chengqi Cichuang Innovation Materials Co., Ltd.DongguanChina

Personalised recommendations