Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14697–14704 | Cite as

Microwave-assisted synthesis of pillared Ni-based metal–organic framework and its derived hierarchical NiO nanoparticles for supercapacitors

  • Xue Han
  • Kai Tao
  • Qingxiang Ma
  • Lei Han
Article
  • 110 Downloads

Abstract

Metal–organic frameworks have emerged as promising precursors and templates for constructing various electrode materials. However, most of MOFs are usually synthesized by time-consuming solvothermal method, which reduces the efficiency of MOFs engaged strategy of fabricating nanostructured electrode materials. In this work, a pillared Ni-MOF (Ni(bdc)(ted)0.5) has been successfully prepared by a facile microwave-assisted method in 30 min. Hierarchical NiO nanoparticles are obtained after annealing the Ni-MOF at various temperatures. When acting as electrode material for supercapacitor, the NiO-350 delivers higher specific capacitance (248.28 F g−1 at 0.5 A g−1), rate capacitance (61.7% at 10 A g−1) and cycling stability (74.3% over 2000 cycles) than those of Ni-400 and Ni-450. The large surface area can provide substantial electroactive sites, and the hierarchical porous structure is beneficial for transport of ions and more electrolyte ions can penetrate into the inner of surface of electrode material. Besides, the nanosized NiO can increase the conductivity of the electrode. All these factors contribute to the superior electrochemical performance of Ni-350. Since microwave-assisted synthesis of MOFs is rapid and facile, more nanostructured electrode materials, such as carbons and metal sulfides can be synthesized by this method followed by appropriate treatment.

Notes

Acknowledgements

The financial support from the National Natural Science Foundation of China (21466030, 51572272), the Science and Technology Department of Zhejiang Province (2017C33007), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2016-09), the Natural Science Foundation of Ningbo (2017A610062), and the K.C. Wong Magna Fund in Ningbo University is greatly appreciated.

Supplementary material

10854_2018_9606_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1679 KB)

References

  1. 1.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Justin, S.K. Meher, G.R. Rao, J. Phys. Chem. C 114, 5203–5210 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Coord. Chem. Rev. 307(Part 2), 361–381 (2016)CrossRefGoogle Scholar
  4. 4.
    M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao, L. Han, J. Alloys Compd. 734, 1–8 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Han, K. Tao, D. Wang, L. Han, Nanoscale 10, 2735–2741 (2018)CrossRefGoogle Scholar
  6. 6.
    X. He, N. Zhang, X. Shao, M. Wu, M. Yu, J. Qiu, Chem. Eng. J. 297, 121–127 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Pan, Y. Wang, H. Hu, X. Li, J. Liu, L. Guan, W. Tian, X. Wang, Y. Li, M. Wu, Carbon 134, 345–353 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Yu, L. Zhang, X. He, H. Yu, J. Han, M. Wu, Mater. Lett. 172, 81–84 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 43, 797–828 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.P. Gao, K.J. Huang, Chem. Asian J. 12, 1969–1984 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Int. J. Hydrogen Energy 34, 4889–4899 (2009)CrossRefGoogle Scholar
  12. 12.
    J.K. Sun, Q. Xu, Energy Environ. Sci. 7, 2071–2100 (2014)CrossRefGoogle Scholar
  13. 13.
    G.Y. Xu, P. Nie, H. Dou, B. Ding, L.Y. Li, X.G. Zhang, Mater. Today 20, 191–209 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.Z. Zheng, H.Y. Ding, M.L. Zhang, Mater. Res. Bull. 44, 403–407 (2009)CrossRefGoogle Scholar
  15. 15.
    G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, M.K. Wu, F.Y. Yi, L. Han, Dalton Trans. 45, 13311 (2016)CrossRefGoogle Scholar
  16. 16.
    X.J. Zhang, W.H. Shi, J.X. Zhu, W.Y. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y.H. Yang, H. Zhang, H.H. Hng, Q.Y. Yan, Nano Res. 3, 643–652 (2010)CrossRefGoogle Scholar
  17. 17.
    W.X. Guo, W.W. Sun, L.P. Lv, S.F. Kong, Y. Wang, ACS Nano 11, 4198–4205 (2017)CrossRefGoogle Scholar
  18. 18.
    Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, Nanoscale 5, 11770 (2013)CrossRefGoogle Scholar
  19. 19.
    J.P. Zheng, P.J. Cygan, T.R. Jow, ChemInform 142, 2699–2703 (1995)Google Scholar
  20. 20.
    H. Kim, B.N. Popov, J. Power Sources 104, 52–61 (2002)CrossRefGoogle Scholar
  21. 21.
    K.R. Prasad, N. Miura, Appl. Phys. Lett. 85, 4199–4201 (2004)CrossRefGoogle Scholar
  22. 22.
    Y.Z. Zheng, M.L. Zhang, Mater. Lett. 61, 3967–3969 (2007)CrossRefGoogle Scholar
  23. 23.
    J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Chem. Commun. 35, 4213 (2008)CrossRefGoogle Scholar
  24. 24.
    Y.G. Wang, Y.Y. Xia, Electrochim. Acta 51, 3223–3227 (2006)CrossRefGoogle Scholar
  25. 25.
    X. Song, L. Gao, J. Am. Ceram. Soc. 91, 3465–3468 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Tao, X. Han, Q. Ma, L. Han, Dalton Trans. 47, 3496–3502 (2018)CrossRefGoogle Scholar
  27. 27.
    Y.J. Zhu, W.W. Wang, R.J. Qi, X.L. Hu, Angew. Chem. Int. Ed. 43, 1410–1414 (2004)CrossRefGoogle Scholar
  28. 28.
    D. Li, S. Komarneni, J. Am. Ceram. Soc. 89, 1510–1517 (2006)CrossRefGoogle Scholar
  29. 29.
    Q.C. Zhang, W.W. Xu, J. Sun, Z.H. Pan, J.X. Zhao, X.N. Wang, J. Zhang, P. Man, J.B. Guo, Z.Y. Zhou, B. He, Z.X. Zhang, Q.W. Li, Y.G. Zhang, L. Xu, Y.G. Yao, Nano Lett. 17, 7552–7560 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Peng, S. Wu, X. Yang, J. Hu, X. Fu, Q. Huo, J. Guan, RSC Adv. 6, 72433–72438 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Guerrero-Medina, G. Mass-González, L. Pacheco-Londoño, S.P. Hernández-Rivera, R. Fu, A.J. Hernández-Maldonado, Microporous Mesoporous Mater. 212, 8–17 (2015)CrossRefGoogle Scholar
  32. 32.
    W. Liang, F. Xu, X. Zhou, J. Xiao, Q. Xia, Y. Li, Z. Li, Chem. Eng. Sci. 148, 275–281 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Vidhyadharan, N.K.M. Zain, I.I. Misnon, R.A. Aziz, J. Ismail, M.M. Yusoff, R. Jose, J. Alloys Compd. 610, 143–150 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Wang, H. Yang, G. Pan, L. Miao, S. Chen, Y. Song, Electrochim. Acta 240, 16–23 (2017)CrossRefGoogle Scholar
  35. 35.
    F. Li, Y. Xing, M. Huang, K.L. Li, T.T. Yu, Y. Zhang, D. Losic, J. Mater. Chem. A 3, 7855–7861 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Liu, F. Liu, Eur. J. Inorg. Chem. (2018)  https://doi.org/10.1002/ejic.201701306 Google Scholar
  37. 37.
    J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, J. Solid State Chem. 184, 578–583 (2011)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, Y. Gui, X. Wu, H. Feng, A. Zhang, L. Wang, T. Xia, Int. J. Hydrogen Energy 34, 2467–2470 (2009)CrossRefGoogle Scholar
  39. 39.
    K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma, L. Han, Chem. Eur. J. (2018)  https://doi.org/10.1002/chem.201800960 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Chemical EngineeringNingbo UniversityNingboPeople’s Republic of China
  2. 2.State Key Laboratory of High-efficiency Coal Utilization and Green Chemical EngineeringNingxia UniversityYinchuanPeople’s Republic of China

Personalised recommendations