Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14689–14696 | Cite as

High efficient electron field emission from rGO conformally coated NiO nanoflakes architecture

  • G. Jayalakshmi
  • K. Saravanan
  • B. K. Panigrahi
  • P. Magudapathy
Article

Abstract

In the study, we report the facile synthesis of reduced graphene oxide (rGO) conformally coated vertically aligned, densely packed NiO nanoflakes (NFs) architecture for high efficient electron field emission applications. The NiO NFs architecture was grown on the Si substrate by a simple hydrothermal method, followed by decoration with rGO by drop casting method. The grazing incidence X-ray diffraction measurements reveal the formation of cubic structured NiO. The grown NiO NFs architecture is in better stoichiometry as evidenced from the resonant Rutherford backscattering spectrometry measurements. The rGO conformally coated NiO NFs (GNiO NFs) shows higher mobility and lower sheet resistance in comparison with its counterparts. X-ray absorption near edge structure analyses at O K-edge reveals the increase in unoccupied density of states due to the charge transfer from NiO to rGO. The rGO conformally coated NiO NFs architecture exhibits low turn-on voltage and enhanced field emission (FE) current as compared to the NiO NFs architecture. The observed low turn-on voltage and enhanced FE current for the GNiO NFs architecture is ascribed to the synergistic effect of addition of rGO as the conductive channels, which results in better charge transport and the enhanced field emission current characteristics.

Notes

Acknowledgements

One of the authors, G. J wishes to thank the Science and Engineering Research Board (SERB), Govt. of India, for financial support through Fast-Track Young Scientist Scheme (Grant No. YSS/2015/000240) and acknowledge Dr. Mukul Gupta for the XANES measurements.

References

  1. 1.
    D. Ye, S. Moussa, J.D. Ferguson, A.A. Baski, M.S. El-Shall, Nano Lett. 12, 1265–1268 (2006)CrossRefGoogle Scholar
  2. 2.
    R.J. Parmee, C.M. Collins, W.I. Milne, M.T. Cole, Nano Converg. 2, 1–27 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V.N. Singh, R.K. Gupta, B.K. Gupta, Sci. Rep. 5, 11612 (2015)CrossRefGoogle Scholar
  4. 4.
    G.H. Zhang, L. Wei, Y.X. Chen, L.M. Mei, J. Jiao, Mater. Lett. 96, 131–134 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, C. Wang, J. Chen, W. Zhu, A. Liao, Y. Li, J. Wang, L. Ma, ACS Appl. Mater. Interfaces 6, 20625–20633 (2014)CrossRefGoogle Scholar
  6. 6.
    L. Wang, J. Lin, Y. Ye, T. Guo, Phys. Status Solidi C 9, 52–54 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Khademi, R. Azimirad, Y.T. Nien, A.Z. Moshfegh, J. Nanopart. Res. 13, 115–125 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Ebrahimi, M. Qorbani, A. Bayat, A.A. Zavarian, A.Z. Moshfegh, J. Phys. D: Appl. Phys. 47, 115302 (2014)CrossRefGoogle Scholar
  9. 9.
    W.E. Mahmoud, T.A. Harbi, Superlattices Microstruct. 50, 21–25 (2011)CrossRefGoogle Scholar
  10. 10.
    C.H. Ho, Y.M. Kuo, C.H. Chan, Y.R. Ma, Sci. Rep. 5, 15856 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Zhao, X. Zhang, X. Xu, Y. Zhao, H. Zhou, J. Li, H. Jin, Cryst. Eng. Commun. 18, 4836–4843 (2016)CrossRefGoogle Scholar
  12. 12.
    N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Proc. Chem. 19, 626–631 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Jana, S. Samai, B.C. Mitra, P. Bera, A. Mondal, Dalton Trans. 43, 13096–13104 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Zhang, C. Rossi, P. Alphonse, C. Tenailleau, Nanotechnology 19, 155605 (2008)CrossRefGoogle Scholar
  15. 15.
    C. Xu, K. Hong, S. Liu, G. Wang, X. Zhao, J. Cryst. Growth 255, 308–312 (2003)CrossRefGoogle Scholar
  16. 16.
    S.W. Woo, A.N. Banerjee, J. Appl. Phys. 107, 114317 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Ghosh, P. Guha, R. Thapa, S. Selvaraj, M. Kumar, B. Rakshit, T. Dash, R. Bar, S.K. Ray, P.V. Satyam, Nanotechnology 27, 125701 (2016)Google Scholar
  18. 18.
    G. Jayalakshmi, K. Saravanan, T. Arun, K. Suresh, B. Sundaravel, B.K. Panigrahi, D. Kanjilal, Carbon 119, 172–178 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Eda, H.E. Unalan, N. Rupesinghe, G.A.J. Amaratunga, M. Chhowalla, Appl. Phys. Lett. 93, 233502 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Saravanan, G. Jayalakshmi, K. Suresh, B. Sundaravel, B.K. Panigrahi, D.M. Phase, Appl. Phys. Lett. 112, 111907 (2018)CrossRefGoogle Scholar
  21. 21.
    G. Jayalakshmi, K. Saravanan, B.K. Panigrahi, B. Sundaravel, M. Gupta, Nanotechnology 29, 185701 (2018)CrossRefGoogle Scholar
  22. 22.
    G. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, H.M. Cheng, ACS Nano 6, 3214 (2012)CrossRefGoogle Scholar
  23. 23.
    Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Nano Energy 1, 107–131 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Singh, S. Kaushal, P. Singh, J. Sharma, J. Photochem. Photobiol. A 364, 130–139 (2018)CrossRefGoogle Scholar
  25. 25.
    M.M. Momeni, Y. Ghayeb, M. Menati, J. Mater. Sci. Mater. Electron. 29, 4136–4146 (2018)CrossRefGoogle Scholar
  26. 26.
    G. Jayalakshmi, K. Saravanan, J. Pradhan, P. Magudapathy, B.K. Panigrahi, J. Lumin. 203, 1–6 (2018)CrossRefGoogle Scholar
  27. 27.
    G.P. Patil, V.S. Bagal, C.R. Mahajan, V.R. Chaudhari, S.R. Suryawanshi, M.A. More, P.G. Chavan, Vacuum 123, 167–174 (2016)CrossRefGoogle Scholar
  28. 28.
    J.C. Lin, B.R. Huang, T.C. Lin, Appl. Surf. Sci. 289, 384–387 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Ding, X. Yan, J. Li, B. Shen, J. Yang, J. Chen, Q. Xue, ACS Appl. Mater. Interfaces 3, 4299–4305 (2011)CrossRefGoogle Scholar
  30. 30.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  31. 31.
    K. Saravanan, B.K. Panigrahi, S. Amirthapandian, K.G.M. Nair, Nucl. Instr. Methods Phys. Res. B 266, 1502–1506 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Mayer, SIMNRA User’s Guide, Report IPP 9/113 (Max-Planck-Institutfur Plasmaphysik, Garching, 1997)Google Scholar
  33. 33.
    G. Ali, A. Mehmood, H.Y. Ha, J. Kim, K.Y. Chung, Sci. Rep. 7, 40910 (2017)CrossRefGoogle Scholar
  34. 34.
    R.J.O. Mossanek, G.D. Canizares, A. Gutierrez, M. Abbate, D.D. Fernandez, L. Soriano, J. Phys.: Condens. Matter 25, 495506 (2013)Google Scholar
  35. 35.
    D. Chen, J. Zhong, W. Chu, Z. Wu, A. Kuzmin, N.M. Ulmane, A. Marcelli, J. Phys.: Condens. Matter 19, 356219 (2007)Google Scholar
  36. 36.
    L. Soriano, A. Gutierrez, I. Preda, S. Palacin, J.M. Sanz, M. Abbate, J.F. Trigo, A. Vollmer, P.R. Bressler, Phys. Rev. B 74, 193402 (2006)CrossRefGoogle Scholar
  37. 37.
    I. Preda, M. Abbate, A. Gutierrez, S. Palacin, A. Vollmer, L. Soriano, J. Electron Spectrosc. Relat. Phenom. 156–158, 111–114 (2007)CrossRefGoogle Scholar
  38. 38.
    R.G. Forbes, Appl. Phys. Lett. 89, 113122 (2006)CrossRefGoogle Scholar
  39. 39.
    J.M. Beebe, B. Kim, J.W. Gadzuk, C.D. Frisbie, J.G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006)CrossRefGoogle Scholar
  40. 40.
    Y.T. Ngo, S.H. Hur, Mater. Res. Bull. 84, 168–176 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. Jayalakshmi
    • 1
  • K. Saravanan
    • 1
  • B. K. Panigrahi
    • 2
  • P. Magudapathy
    • 1
  1. 1.Materials Science GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Electronics and Instrumentation GroupIndira Gandhi Centre for Atomic Research, HBNIKalpakkamIndia

Personalised recommendations