Advertisement

High rate cyclability of nickle-doped LiNi0.1Mn1.9O4 cathode materials prepared by a facile molten-salt combustion method for lithium-ion batteries

  • Hongli Bai
  • Wangqiong Xu
  • Junming Guo
  • Chang-wei Su
  • Mingwu Xiang
  • Xiaofang Liu
  • Rui Wang
Article
  • 17 Downloads

Abstract

Here we employed a facile low temperature molten-salt combustion method combined with two-stage calcination process to synthesize a series of Ni-doped spinel LiNi0.1Mn1.9O4 cathode materials. All the LiNi0.1Mn1.9O4 materials present well-defined cubic spinel structure with a representative Fd3m space group. With the elevated calcination temperature, the particle size and crystallinity increase simultaneously. Benefiting from the optimization of calcination temperature, the LiNi0.1Mn1.9O4 prepared at 600 °C reveals a favorable crystal structure and morphology consisted of homogeneous nanoparticles with a size of 90–110 nm. Consequently, the optimized LiNi0.1Mn1.9O4 cathode exhibits high rate capability and ultralong cycling stability with a discharge specific capacity of 97.1 mAh g−1 and a capacity retention of 63.5% after 1000 cycles at a high current rate of 10 and 25 °C. Even at a high-temperature of 55 °C, a high initial discharge capacity of 106.1 mAh g−1 and a good capacity retention of 79.0% is also obtained after 100 cycles at 5 C. Such an excellent electrochemical performance together with the facile synthesis approach may endow the as-prepared LiNi0.1Mn1.9O4 to be a promising practical application for high-power lithium-ion batteries.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51462036, U1602273).

References

  1. 1.
    D. Arumugam, G.P. Kalaignan, Synthesis and elelctrochemical charaterizations of nano size Ce doped LiMn2O4 cathode materials for rechargeable lithium batteries. J. Electroanal. Chem. 648, 54–59 (2010)CrossRefGoogle Scholar
  2. 2.
    F. Mattelaer, P.M. Vereecken, J. Dendooven, C. Detavernier, The influence of ultrathin amorphous ALD alumina and Titania on the rate capability of anatase TiO2 and LiMn2O4 Lithium ion battery electrodes. Adv. Mater. Interfaces 4, 1601237 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Arumugam, G.P. Kalaignan, K. Vediappan, C.W. Lee, Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 materials for rechargeable lithium batteries. Electrochim. Acta 55, 8439–8444 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Zhang, Y.L. Xu, D. Liu, X.S. Zhang, C.J. Zhao, Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method. Electrochim. Acta 125, 225–231 (2014)CrossRefGoogle Scholar
  5. 5.
    O.S. Mendoz-Hernandez, H. Ishikaw, Y. Nishikaw, Y. Maruyam, Y. Sone, M. Umed, Electrochemical impedance study of LiCoO2 cathode reactions in a lithium ion cell incorporating a reference electrode. J. Solid State Electrochem. 19, 1203–1210 (2015)CrossRefGoogle Scholar
  6. 6.
    M.V. Reddy, T.W. Jie, C.J. Jafta, K.I. Ozoemena, M.K. Mathe, A.S. Nair, S.S. Peng, M.S. Idris, G. Balakrishna, F.I. Ezema, B.V.R. Chowdari, Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries. Electrochim. Acta 128, 192–197 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Li, Z.W. Xie, W.J. Liu, W.J. Ge, H. Wang, M.Z. Qu, Effects of fluorine doping on structure surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta 174, 1122–1130 (2015)CrossRefGoogle Scholar
  8. 8.
    S.N. Kwon, H.R. Park, M.Y. Song, Electrochemical performances of LiNiO2 substituted by Ti for Ni via the combustion method. Ceram. Int. 40, 11131–11137 (2014)CrossRefGoogle Scholar
  9. 9.
    M.S. Wang, J. Wang, J. Zhang, L.Z. Fan, Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 21, 27–35 (2015)CrossRefGoogle Scholar
  10. 10.
    X.F. Gao, Y.J. Sha, Q. Lin, R. Cai, M.O. Tade, Z.P. Shao, Combustio n-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J. Power Sources 275, 38–44 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Talebi-Esfandarani, O. Savadogo, Synthesis and characterization of Pt-doped LiFePO4/C composites using the sol-gel method as the cathode material in lithium-ion batteries. J. Appl. Electrochem. 44, 555–562 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Yao, Y. Wang, W.M. Xiang, J. Li, B. Wang, H. Liu, Facile synthesis of LiFePO4/C with high tap-density as cathode for high performance lithium ion batteries. Int. J. Electrochem. Sci. 12, 206–217 (2017)CrossRefGoogle Scholar
  13. 13.
    R.Y. Jiang, C.Y. Cui, H.Y. Ma, T. Chen, Study on the enhanced electrochemical performance of LiMn2O4 cathode material at 55 °C by the nano Ag-coating. J. Electroanal. Chem. 744, 69–76 (2015)CrossRefGoogle Scholar
  14. 14.
    H.Q. Wang, F.Y. Lai, Y. Li, X.H. Zhang, Y.G. Huang, S.J. Hu, Q.Y. Li, Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim. Acta 177, 290–297 (2015)CrossRefGoogle Scholar
  15. 15.
    X.Y. Feng, Y. Tian, J.X. Zhang, L.W. Yin, The effect of aluminum precursors on the structural and electrochemical properties of spinel LiMn2−xAlxO4 (x = 0, 0.05, 0.1, 0.15) cathode materials. Powder Technol. 253, 35–40 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Wu, J. Guo, X. Qin, C. Bi, J. Wang, L. Wang, G. Liang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel in half-cell and full-cell via yttrium doping. J. Alloy. Compd. 721, 721–730 (2017)CrossRefGoogle Scholar
  17. 17.
    A.M. Hashem, A.E. Abdel-Ghany, H.M. Abuzeid, R.S. El-Tawil, S. Indris, H. Ehrenberg, C.M. Julien, EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloy. Compd. 37, 758–766 (2018)CrossRefGoogle Scholar
  18. 18.
    D.Y. Shin, Y.G. Lee, H.J. Ahn, One-pot synthesis of aluminum oxide coating and aluminum doping on lithium manganese oxide nanoparticles for high performance energy storage system. J. Alloy. Compd. 27, 165–1170 (2017)Google Scholar
  19. 19.
    S. Tao, H. Zhao, C. Wu, H. Xie, P. Cu, T. Xiang, W. Chu, Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Mater. Chem. Phys. 199, 203–208 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Yan, H.H. Liu, Y.L. Wang, X.X. Zhao, Y.M. Mi, B.J. Xia, Enhanced high-temperature cycling stability of LiNi1/3Co1/3Mn1/3O2-coated LiMn2O4 as cathode material for lithium ion batteries. Ionics 21, 1835–1842 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.S. Shi, S.M. Zhu, C.L. Zhu, Y. Li, Z.X. Chen, D. Zhang, Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery. Electrochim. Acta 154, 17–23 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Chen, D. Kramer, R. Mönig, Chemomechanical fatigue of LiMn1.95Al0.05O4 electrodes for lithium-ion batteries. Electrochim. Acta 259, 939–948 (2018)CrossRefGoogle Scholar
  23. 23.
    T.F. Yi, L.C. Yin, Y.Q. Ma, H.Y. Shen, Y.R. Zhu, R.S. Zhu, Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram. Int. 39, 4673–4678 (2013)CrossRefGoogle Scholar
  24. 24.
    M.W. Xiang, C.W. Su, L.L. Feng, M.L. Yuan, J.M. Guo, Rapid synthesis of high-cycling performance LiMgxMn2–xO4 (x ≦ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim. Acta 125, 524–529 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Lturrondobeitia, A. Goni, L. Lezama, C. Kim, M. Doeff, J. Cabana, T. Rojo, Effect of Si(IV) substitution on electrochemical, magnetic and spectroscopic performance of nanosized LiMn2−xSixO4. J. Mater. Chem. A1, 10857–10862 (2013)CrossRefGoogle Scholar
  26. 26.
    T.F. Yi, S.Y. Yang, H.T. Ma, X.Y. Li, Y.Q. Ma, H.B. Qiao, R.S. Zhu, Effect of temperatue on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4 positive electrode material. Ionics 20, 309–314 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Wei, K.B. Kima, G. Chen, Evolution of the local structure and electrochemical properties of spinel LiNixMn2–xO4 (0 ≤ x ≤ 0.5). Electrochim. Acta 51, 3365–3373 (2006)CrossRefGoogle Scholar
  28. 28.
    M.A. Kebede, N. Kunjuzwa, C.J. Jafta, M.K. Mathe, K.I. Ozoemena, Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2–xO4; 0 ≦ x ≦ 0.2)for lithium ion battery: enhancing energy storage capacity retention and lithium ion transport. Electrochim. Acta 128, 172–177 (2014)CrossRefGoogle Scholar
  29. 29.
    F.X. Wang, S.Y. Xiao, Y. Shi, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Spinel LiNixMn2–xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochim. Acta 93, 301–306 (2013)CrossRefGoogle Scholar
  30. 30.
    H.M. Wu, J.P. Tu, X.T. Chen, Y. Li, X.B. Zhao, G.S. Cao, Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J. Solid State Electrochem. 11, 173–176 (2007)CrossRefGoogle Scholar
  31. 31.
    Q.L. Wei, X.Y. Wang, X.K. Yang, B.W. Ju, B.N. Hu, H.B. Shu, W.C. Wen, M. Zhou, Y.F. Song, H. Wu, H. Hu, Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. J. Mater. Chem. A1, 4010–4016 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Deng, J. Mou, H. Wu, L. Zhou, Q. Zheng, K.H. Lam, D. Lin, Enhanced electrochemical performance in Ni-doped LiMn2O4-based composite cathodes for lithium-ion batteries. ChemElectroChem 4, 1362–1371 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Jiang, L. Liang, D. Li, J. Xiao, Z. Peng, K. Du, F. Jiang, Synthesis of high-performance cycling LiNixMn2–xO4 (x ≤ 0.10) as cathode material for lithium batteries. J. Nanosci. Nanotechnol. 17, 9182–9185 (2017)CrossRefGoogle Scholar
  34. 34.
    M.W. Raja, S. Mahanty, R.N. Basu, Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method. J. Power Sources 192, 618–626 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Mukherjee, N. Schuppert, A. Bates, S.C. Lee, S. Park, Novel mesoporous microspheres of Al and Ni doped LMO spinels and their performance as cathodes in secondary lithium ion batteries. Int. J. Green Energy 14, 656–664 (2017)CrossRefGoogle Scholar
  36. 36.
    K.J. Kim, J.H. Lee, Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films. Solid State Commun. 141, 99–103 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Iqbal, Y. Iqbal, A.M. Khan, S. Ahmed, Low content Ni and Cr co-doped LiMn2O4 with enhanced capacity retention. Ionics 23, 1995–2003 (2017)CrossRefGoogle Scholar
  38. 38.
    K. Ragavendran, A. Nakkiran, P. Kalyani, A. Veluchamy, R. Jagannathan, Nickel doped spinel lithium manganate—some insights using opto-impedance. Chem. Phys. Lett. 456, 110–115 (2008)CrossRefGoogle Scholar
  39. 39.
    J.J. Huang, F.L. Yang, Y.J. Guo, C.C. Peng, H.L. Bai, J.H. Peng, J.M. Guo, LiMgxMn2–xO4 (x ≦ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature. Ceram. Int. 41, 9662–9667 (2015)CrossRefGoogle Scholar
  40. 40.
    J.J. Huang, Q.L. Li, H.L. Bai, W.Q. Xu, Y.H. He, C.W. Su, J.H. Peng, J.M. Guo, Preparation and electrochemical properties of LiCuxMn2–xO4 (x ≤ 0.10) cathode material by a low-temperature molten-salt combustion method. Int. J. Electrochem. Sci. 10, 4596–4603 (2015)Google Scholar
  41. 41.
    C.H. Jiang, S.X. Dou, H.K. Liu, M. Ichihara, H.S. Zhou, Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J. Power Sources 172, 410–415 (2007)CrossRefGoogle Scholar
  42. 42.
    Y.J. Wei, L.Y. Yan, C.Z. Wang, X.G. Xu, F. Wu, G. Chen, Effects of Ni doping on [MnO6] octahedron in LiMn2O4. J. Phys. Chem. B 108, 18547–18551 (2004)CrossRefGoogle Scholar
  43. 43.
    M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V. Subba, B.V.R. Chowdari, (Li, Al)-co-doped spinel, Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries. Electrochim. Acta 88, 745–755 (2013)CrossRefGoogle Scholar
  44. 44.
    A.B. Yuan, L. Tian, W.M. Xu, Y.Q. Wang, Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J. Power Sources 195, 5032–5038 (2010)CrossRefGoogle Scholar
  45. 45.
    W.J. Zhou. S.J. Bao, Y.Y. Liang, B.L. He, H.L. Li, Synthesis and electrochemical properties of spinel LiMn2O4 prepared by the rheological phase method. J. Solid State Electrochem. 10, 277–282 (2006)CrossRefGoogle Scholar
  46. 46.
    H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci. 29, 3035–3044 (2018)Google Scholar
  47. 47.
    S.E.M. pourhosseini, O. Norouzi, P. Salimi, H.R. Naderi, Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nano particles derived from a harmful marine biomass as high performance asymmetric supercapacitor electrodes. ACS Sustain. Chem. Eng. 6, 4746–4758 (2018)CrossRefGoogle Scholar
  48. 48.
    G.T.K. Fey, C.Z. Lu, T.P. Kumar, Preparation and electrochemical properties of high-voltage cathode materials LiMyNi0.5–yMn1.5O4 (M = Fe, Cu, Al, Mg; y = 0.0-0.4). J. Power Sources 115, 332–345 (2003)CrossRefGoogle Scholar
  49. 49.
    S.J. Bao, Y.Y. Liang, W.J. Zhou, B.L. He, H.L. Li, Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol-gel method. J. Power Sources 154, 239–245 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongli Bai
    • 1
    • 2
    • 3
  • Wangqiong Xu
    • 1
    • 2
    • 3
  • Junming Guo
    • 1
    • 2
    • 3
  • Chang-wei Su
    • 1
    • 2
    • 3
  • Mingwu Xiang
    • 1
    • 2
    • 3
  • Xiaofang Liu
    • 1
    • 2
    • 3
  • Rui Wang
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic RegionsYunnan Minzu UniversityKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of YunnanYunnan Minzu UniversityKunmingPeople’s Republic of China
  3. 3.Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in YunnanYunnan Minzu UniversityKunmingPeople’s Republic of China

Personalised recommendations