Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14651–14656 | Cite as

Improved ferroelectric properties of (100)-oriented PZT thin films deposited on stainless steel substrates with La0.5Sr0.5CoO3 buffer layers

  • Hongfang Li
  • Susu Wang
  • Jie Jian
  • Hanting Dong
  • Jianguo Chen
  • Dengren Jin
  • Jinrong Cheng
Article
  • 95 Downloads

Abstract

Ferroelectric Pb(Zr0.53Ti0.47)O3 (PZT) thin films were deposited on La0.5Sr0.5CoO3 (LSCO) buffered stainless steel (SS) substrates by the sol–gel processes. The introduction of LSCO buffer layers facilitated the formation of (100)-oriented PZT thin films, and the (100) orientation degree of PZT thin films was obviously improved from 20 to 62%. Such PZT thin films with smooth and dense microstructures exhibited enhanced remnant polarization, reduced dielectric loss and leakage current density of 42 µC/cm2, 2.7% at 1 kHz, and 7.6 × 10− 7 A/cm2 at 300 kV/cm, respectively. Moreover, the fatigue endurance property of PZT thin films was also improved.

Notes

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Grant No. 51672169).

Compliance with Ethical Standards

Conflict of interest

We state that we do not have any commercial interest conflict with the submitted work.

References

  1. 1.
    F. Zheng, J. Chen, X. Li et al., Mater. Lett. 60(21–22), 2733–2737 (2006)CrossRefGoogle Scholar
  2. 2.
    G.L. Smith, J.S. Pulskamp, L.M. Sanchez et al., J. Am. Ceram. Soc. 95(6), 1777–1792 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Lu, H. Dong, J. Chen et al., J. Sol-Gel Sci. Technol. 2017, 1–6 (2017)Google Scholar
  4. 4.
    Y.J. Yu, F.P. Wang, H.L.W. Chan et al., Appl. Phys. A 78(5), 733–736 (2004)CrossRefGoogle Scholar
  5. 5.
    J.M. Marshall, S. Corkovic, Q. Zhang et al., Integr. Ferroelectr. 80(1), 77–85 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Yu, X.J. Meng, J.L. Sun et al., J. Appl. Phys. 96(5), 2792–2799 (2004)CrossRefGoogle Scholar
  7. 7.
    G.L. Rhun, G. Poullain, R. Bouregba et al., J. Eur. Ceram. Soc. 25(12), 2281–2284 (2005)CrossRefGoogle Scholar
  8. 8.
    N.R. Harris, M. Hill et al., Sens. Actuators A 132(1), 311–316 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Dong, H. Li, J. Chen et al., J. Appl. Phys. 122(14), 144104 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Dong, G. Lu, D. Chen et al., J. Sol-Gel Sci. Technol. 80(3), 848–852 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Bose, M. Sreemany, S. Bysakh, Appl. Surf. Sci. 282(5), 202–210 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, M.W. Cole, S.P. Alpay, J. Appl. Phys. 108(5), 351 (2010)Google Scholar
  13. 13.
    W.L. Zhu, J.L. Zhu, Y.S. Luo et al., Appl. Surf. Sci. 256(22), 6673–6677 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Choi, J.S. Kim, I. Hwang et al., Appl. Phys. Lett. 96(26), 262113–262113 (2010)CrossRefGoogle Scholar
  15. 15.
    F. Chen, J. Cheng, S. Yu et al., J. Eur. Ceram. Soc. 30(2), 453–457 (2010)CrossRefGoogle Scholar
  16. 16.
    D.A. Tossell, N.M. Shorrocks, J.S. Obhi et al., Ferroelectrics 134(1), 297–302 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Xiao, S. Li, Z. Lei, J. Mater. Sci.: Mater. Electron. 26(6), 1–7 (2015)Google Scholar
  18. 18.
    J. Cheng, Z. Meng, Thin Solid Films 385(1–2), 5–10 (2001)CrossRefGoogle Scholar
  19. 19.
    W.H. Xu, D. Lu, T.Y. Zhang, Appl. Phys. Lett. 79(25), 4112–4114 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Burs̆ÍK, P. Vanĕk, R. Kuz̆El et al., J. Eur. Ceram. Soc. 21(10–11), 1503–1507 (2001)CrossRefGoogle Scholar
  21. 21.
    S. Zhao, F. Ma, Z. Song et al., Mater. Sci. Eng. A 474(1), 134–139 (2008)CrossRefGoogle Scholar
  22. 22.
    K. Maki, N. Soyama, K. Nagamine et al., Jpn. J. Appl. Phys. 40(9S), 5533–5538 (2001)CrossRefGoogle Scholar
  23. 23.
    K.H. Yoon, B.D. Lee, Park, J. Appl. Phys. Lett. 79(7), 1018–1020 (2001)CrossRefGoogle Scholar
  24. 24.
    Q. Yu, F.Y. Zhu, L.Q. Cheng et al., Appl. Phys. Lett. 104(10), 84 (2014)CrossRefGoogle Scholar
  25. 25.
    C.H. Sim, Z.H. Zhou, X.S. Gao et al., J. Appl. Phys. 103(3), 1400 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Wang, A.A. Wereszczak, H.T. Lin, J. Appl. Phys. 105(1), 157 (2009)Google Scholar
  27. 27.
    W.J. Lin, T.Y. Tseng, Y.Z. Wu et al., J. Mater. Sci.: Mater. Electron. 7(6), 409–417 (1996)Google Scholar
  28. 28.
    F. Chen, J. Cheng, S. Yu et al., J. Mater. Sci.: Mater. Electron. 21(5), 514–518 (2010)Google Scholar
  29. 29.
    C. Wang, M. Takahashi, H. Fujino et al., J. Appl. Phys. 99(5), 55 (2006)Google Scholar
  30. 30.
    G.W. Pabst, L.W. Martin, Y.H. Chu et al., Appl. Phys. Lett. 90(7), 1719 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongfang Li
    • 1
  • Susu Wang
    • 1
  • Jie Jian
    • 1
  • Hanting Dong
    • 1
  • Jianguo Chen
    • 1
  • Dengren Jin
    • 1
  • Jinrong Cheng
    • 1
  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations