Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14635–14642 | Cite as

Influence of sputtering power on structural, optical and electrical properties of CdTe thin films prepared by DC magnetron sputtering

  • Peng Gu
  • Xinghua Zhu
  • Jitao Li
  • Haihua Wu
  • Dingyu Yang
Article
  • 106 Downloads

Abstract

The cadmium telluride (CdTe) thin films have been successfully deposited on glass substrates by direct-current (DC) magnetron sputtering method, and the structural, optical and electrical properties of samples were investigated in this paper. X-ray diffraction patterns revealed that all samples exhibited a preferred orientation along (111) plane with cubic phase, and the crystallite size was first increased from 13.6 to 42 nm and then decreased to 31 nm as the sputtering power increased from 10 to 80 W. AFM images showed that surface morphology of CdTe films was affected by the sputtering power and the particles in the films exhibited uniform distribution with obvious RMS roughness (25.9 nm) as the sputtering power was 40 W. Meanwhile, CdTe films appeared a higher transmission properties in the range of 850–1000 nm, and the band gap of films gradually decreased from 1.96 to 1.51 eV and then increased to 1.67 eV as the sputtering power constantly increased. Raman spectrum revealed that the peak at 140 cm−1 exhibited dominant among other peaks, associated to the E mode of Te. The current–voltage (I–V) curves indicated that the conductivity of CdTe films was strongly dependent on the sputtering power and the optimal electrical properties could be achieved at the sputtering power of 40 W.

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (NSFC) No. 11675029 and Sichuan Province Science and Technology Program Nos. 2015GZ0194 and 2016FZ0018.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

  1. 1.
    X.J. Shen, C.W. Shi, X.P. Zhan, M. Yao, Adv. Mater. Res. 590, 40–44 (2012)CrossRefGoogle Scholar
  2. 2.
    T.M. Razykov, K.M. Kuchkarov, C.S. Ferekides, Sol. Energy 144, 411–416 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Li, X. Liu, B. Yang, P. Wang, RSC Adv. 4, 5046–5054 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Vaillant, N. Armani, L. Nasi, Thin Solid Films 516, 7075–7078 (2008)CrossRefGoogle Scholar
  5. 5.
    K.M. Abuel-Rub, S.R. Hahn, Appl. Surf. Sci. 258, 6142–6147 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Chander, M.S. Dhaka, J. Mater. Sci.: Mater. Electron. 27, 11961–11973 (2016)Google Scholar
  7. 7.
    J.D. Major, E. Azaceta, Sol. Energy Mat. Sol. C. 160, 107–115 (2017)CrossRefGoogle Scholar
  8. 8.
    G.I. Garciaalvarado, Vacuum 142, 175–180 (2017)CrossRefGoogle Scholar
  9. 9.
    T. Gaewdang, Adv. Mater. Res. 55, 881–884 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Chander, M.S. Dhaka, Physica E 80, 62–68 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Chander, M.S. Dhaka, Physica E 76, 52–59 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Hayashi, T. Suzuki, Y. Ema, Jpn. J. Appl. Phys. 27, 1626–1629 (1988)CrossRefGoogle Scholar
  13. 13.
    D. Grecu, A.D. Compaan, J. Appl. Phys. 88, 2490–2496 (2000)CrossRefGoogle Scholar
  14. 14.
    A. Majid, M. Tanveer, U.A. Rana, J. Supercond. Nov. Magn. 29, 1–5 (2016)CrossRefGoogle Scholar
  15. 15.
    Z. Ghorannevis, E. Akbarnejad, J. Theor. Appl. Phys. 10, 225–231 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Kulkarni, S. Rondiya, Energy Procedia 110, 188–195 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Anders, J. Vac. Sci. Technol. A. 28, 783–790 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Emmerlich, S. Mraz, R. Snyders, K. Jiang, Vacuum 82, 867–870 (2008)CrossRefGoogle Scholar
  19. 19.
    D.J. Christie, J. Vac. Sci. Technol. A. 23, 330–335 (2005)CrossRefGoogle Scholar
  20. 20.
    G.R. Jones, G.M. Williams, Appl. Phys. Lett. 39, 954–956 (1981)CrossRefGoogle Scholar
  21. 21.
    K.R. Chauhan, I.J. Burgess, G.S. Chang, J. Electroanal. Chem. 713, 70–76 (2014)CrossRefGoogle Scholar
  22. 22.
    V. Kumar, R.G. Singh, F. Singh, L.P. Purohit, J. Alloys Compd. 544, 120–124 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.H. Cheng, B.K. Tay, S.P. Lau, X. Shi, H.S. Tan, J. Vac. Sci. Technol. A. 19, 2102–2108 (2001)CrossRefGoogle Scholar
  24. 24.
    J.H. Lee, D.G. Lim, J.S. Yi, Sol. Energ. Mat. Sol. C. 75, 235–242 (2003)CrossRefGoogle Scholar
  25. 25.
    R. Zia, F. Saleemi, S. Nassem, Optik 127, 1972–1974 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, Sol. Energy Mat. Sol. C. 90, 694–703 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Kulkarni, A. Pawbake, R. Waykar, J. Mater. Sci.: Mater. Electron. 27, 12405–12411 (2016)Google Scholar
  28. 28.
    M. Ashraf, S.M.J. Akhtar, A.F. Khan, J. Alloys Compd. 509, 2414–2419 (2011)CrossRefGoogle Scholar
  29. 29.
    W. Bludau, A. Onton, W. Heinke, J. Appl. Phys. 45, 1846–1848 (2003)CrossRefGoogle Scholar
  30. 30.
    S.I. Kobayashi, S. Katsumoto, Jpn. J. Appl. Phys. 56, 2256–2258 (2007)CrossRefGoogle Scholar
  31. 31.
    F. Gritti, C. Perdu, G. Guiochon, J. Chromatogr. A 1180, 73–89 (2008)CrossRefGoogle Scholar
  32. 32.
    V. Dzhagan, I. Lokteva, C. Himcinschi, Nanoscale. Res. Lett. 6, 1–10 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Farid, S. Mukherjee, H. Jung, Mater. Res. Express 2, 1–6 (2015)CrossRefGoogle Scholar
  34. 34.
    O.A. Fedyaeva, Russ. J. Phys. Chem. A 85, 903–905 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Calixto, Spectrochim. Acta. A 65, 51–55 (2006)CrossRefGoogle Scholar
  36. 36.
    P.T.C. Freire, Phys. Rev. B 55, 6743–6746 (1997)CrossRefGoogle Scholar
  37. 37.
    M. Becerril, J. Phys. Chem. Solids 62, 1081–1085 (2001)CrossRefGoogle Scholar
  38. 38.
    A. Iribarren, I. Riech, M.P. Hernandez, J. Vac. Sci. Technol. A 17, 3433–3436 (1999)CrossRefGoogle Scholar
  39. 39.
    A. Picosvega, M. Becerril, J. Appl. Phys. 83, 760–763 (1998)CrossRefGoogle Scholar
  40. 40.
    B. Li, J. Liu, G. Xu, Appl. Phys. Lett. 101, 6304–6305 (2012)Google Scholar
  41. 41.
    G. Kartopu, V. Barrioz, Thin Solid Films 558, 374–377 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peng Gu
    • 1
  • Xinghua Zhu
    • 1
    • 2
  • Jitao Li
    • 1
  • Haihua Wu
    • 1
  • Dingyu Yang
    • 1
  1. 1.College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduPeople’s Republic of China
  2. 2.College of Intelligent ManufacturingSichuan University of Arts and ScienceDazhouPeople’s Republic of China

Personalised recommendations