Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14574–14581 | Cite as

Facile one-step synthesis of agaric-like cobalt–manganese oxide nanosheets for supercapacitor with excellent long-term stability

  • Yuming Dai
  • Shuaishuai Zhu
  • Yuan Cong
  • Yuhan Zeng
  • Yaxin Gao
  • Tianyu Zhang
  • Changchun Wang
Article
  • 53 Downloads

Abstract

A facile one-step method is developed to synthesize homogenous agaric-like cobalt–manganese oxide nanosheets with excellent supercapacitive performance in this study. The optimal sample shows morphologies of equiaxed spheres with diameter of 300 ± 30 nm, which consists of agaric-like nanosheets with thickness of approximate 3 nm. The active material is composed of MnO2 and Co3O4 which is identified by the results of high resolution transmission electron microscopy, X-ray diffraction pattern and X-ray photoelectron spectroscopy spectrum. The as-prepared sample owns a high specific capacitance of 683 F g−1 at a scan rate of 5 mV s−1, while the value still retains 64% at a fast scan rate of 100 mV s−1 (436 F g−1). Moreover, the sample exhibits a remarkable long-term durability which can keep 83.5% capacitance retention over 20,000 charge/discharge cycles at a current density of 5 A g−1. These results suggest that the thin agaric-like nanosheets plays an important role in the excellent performance for supercapacitor. The investigation offers a simple way to prepare agaric-like cobalt–manganese oxide which has potential applications in supercapacitors with excellent long-term stability.

Notes

Acknowledgements

This work was supported by the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province, the Scientific Research Foundation of Nanjing Institute of Technology (CKJA201502, JCYJ201606) and the Practice Innovation Program for College Students of Jiangsu Province (201811276).

Supplementary material

10854_2018_9592_MOESM1_ESM.docx (10 mb)
Supplementary material 1 (DOCX 10282 KB)

References

  1. 1.
    Y. Ruan, J. Jiang, H. Wan, X. Ji, L. Miao, L. Peng, J. Power Sources 301, 122–130 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Kotal, H. Kim, S. Roy, I. Oh, J. Mater. Chem. A 5, 17253–17266 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, ACS Nano 8, 3761–3770 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Yun, Y. Lim, G.N. Jang, D. Kim, S. Lee, H. Park, Nano Energy 19, 401–414 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRefGoogle Scholar
  6. 6.
    Q. Li, W. Chen, Z. Liu, M. Li, L. Ma, J. Power Sources 279, 267–280 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Sun, X. Fu, S. Xie, Y. Jiang, H. Peng, Adv. Mater. 28, 2070–2076 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, Nano Lett. 17, 2719–2726 (2017)CrossRefGoogle Scholar
  9. 9.
    H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, Nat. Commun. 4, 1894 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Dai, W. Xu, Y. Xi, M. Wang, X. Gu, D. Guo, Nano Energy 19, 363–372 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, Adv. Funct. Mater. 25, 1063–1073 (2015)CrossRefGoogle Scholar
  12. 12.
    W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Energy Environ. Sci. 6, 3314–3321 (2013)CrossRefGoogle Scholar
  14. 14.
    M.S. Wu, K.C. Huang, Chem. Commun. 47, 12122–12124 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Tao, L. Ruiyi, Y. Tingting, L. Zaijun, Electrochim. Acta 152, 530–537 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Kang, A. Hirata, H.J. Qiu, L. Chen, X. Ge, T. Fujita, Adv. Mater. 26, 269–272 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Hu, B.Y. Guan, X.W. Lou, Chem 1, 102–113 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Zhong, J. Liu, Z. Lu, H. Xia, Mater. Lett. 166, 223–226 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Choudhary, C. Li, H. Chung, J. Moore, J. Thomas, Y. Jung, ACS Nano 10, 10726–10735 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Angew. Chem. Int. Ed. 56, 7141–7145 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Wang, L. Zhang, C. Sun, Y. Shao, Y. Wu, J. Lv, Adv. Mater. 28, 3768–3776 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang, X. Wang, Adv. Sci. 3, 1500299 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Achour, R. Lucio-Porto, M. Chaker, A. Arman, A. Ahmadpourian, M.A. Soussou, Electrochem. Commun. 77, 40–43 (2017)CrossRefGoogle Scholar
  24. 24.
    G.L. Guo, L. Huang, Q.H. Chang, L.C. Ji, Y. Liu, Y.Q. Xie, Appl. Phys. Lett. 99, 83111 (2011)CrossRefGoogle Scholar
  25. 25.
    L.J. Cao, S.B. Yang, W. Gao, Z. Liu, Y.J. Gong, L.L. Ma, Small 9, 2905–2910 (2013)CrossRefGoogle Scholar
  26. 26.
    A.S. Westover, J.W. Tian, S. Bernath, L. Oakes, R. Edwards, F.N. Shabab, Nano Lett. 14, 3197–3202 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, Nano Energy 19, 222–233 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Ji, X. Liu, Z. Liu, B. Yan, L. Chen, Y. Xie, Adv. Funct. Mater. 25, 1886–1894 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Chen, G. Yang, Y. Jia, H. Zheng, ChemElectroChem 3, 1490–1496 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, ACS Appl. Mater. Interfaces 6, 613–621 (2013)CrossRefGoogle Scholar
  31. 31.
    J.S. Shaikh, R.C. Pawar, A.V. Moholkar, J.H. Kim, P.S. Patil, Appl. Surf. Sci. 257, 4389–4397 (2011)CrossRefGoogle Scholar
  32. 32.
    F. Wang, X. Zhan, Z. Cheng, Z. Wang, Q. Wang, K. Xu, Small 11, 749–755 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, ACS Appl. Mater. Interfaces 9, 15350–15363 (2017)CrossRefGoogle Scholar
  34. 34.
    W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, T. Zhai, Nano Energy 35, 242–250 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Energy Environ. Sci. 10, 941–949 (2017)CrossRefGoogle Scholar
  36. 36.
    Z. Su, C. Yang, B. Xie, Z. Lin, Z. Zhang, J. Liu, Energy Environ. Sci. 7, 2652–2659 (2014)CrossRefGoogle Scholar
  37. 37.
    N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M. Zhu, Adv. Energy Mater. 6, 1501458 (2016)CrossRefGoogle Scholar
  38. 38.
    X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6, 232–236 (2011)CrossRefGoogle Scholar
  39. 39.
    X. Fan, Z. Yang, Z. Liu, Chin. J. Chem. 34, 107–113 (2016)CrossRefGoogle Scholar
  40. 40.
    G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. Int. Ed. 50, 826–859 (2011)CrossRefGoogle Scholar
  41. 41.
    B. Ameri, S.S.H. Davarani, R. Roshani, H.R. Moazami, A. Tadjarodi, J. Alloys Compd. 695, 114–123 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Yao, X. Zhao, L. Jin, F. Zhao, J. Zhang, J. Dong, Chem. Eng. J. 322, 582–589 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Li, J.P. Cheng, J. Wang, F. Liu, X.B. Zhang, Electrochim. Acta 206, 108–115 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials EngineeringNanjing Institute of TechnologyNanjingPeople’s Republic of China

Personalised recommendations