Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14519–14527 | Cite as

Thermal aging effects on microstructure, elastic property and damping characteristic of a eutectic Sn–3.5Ag solder

  • Asit Kumar Gain
  • Liangchi Zhang
Article
  • 82 Downloads

Abstract

The present work describes the microstructural changes and their impacts on the electrical resistivity, elastic modulus and damping property of a eutectic Sn–3.5wt% Ag solder material when exposed to high temperature. A detail microstructural study was conducted through the scanning electron microscopy with energy-dispersive spectroscopy analysis and electron backscattered diffraction technique. In as-cast eutectic Sn–Ag solder alloy, sub-micrometer size Ag3Sn intermetallic compound (IMC) particles and bamboo-like dendritic structure with a dimension of length 20–30 µm and width 3–5 µm formed during solidification. However, after thermal aging treatment at 150 °C for 60 days, the fine Ag3Sn IMC particles and β-Sn grain appeared with coarse microstructure with the formation of twinning having the <100> twin axis and 60° rotation. As a result, microstructure and Sn-crystal orientation of Sn–Ag solder greatly impact on its overall properties and turned inferior. From material properties evaluation, it was confirmed that the electrical resistivity, elastic and shear moduli values were significantly reduced with aging time. Consequently, the values of damping capacity improved due to the reduction of moduli.

Notes

Acknowledgements

The present work is supported by UNSW, Australia (Project No. RG124326). Authors are grateful to Mr. Tit Wah Chan, Physics and Materials Science Department, CityU, for assisting the damping capacity test. We would also like to thank Dr. M. Z. Quadir, Electron Microscopic Unit, UNSW, for helping the EBSD analysis.

References

  1. 1.
    K. Lee, K.S. Kim, Y. Tsukada, K. Suganuma, K. Yamanaka, S. Kuritani, M. Ueshima, Microelectron. Reliab. 51, 2290 (2011)CrossRefGoogle Scholar
  2. 2.
    A.A. El-Daly, T.A. Elmosalami, W.M. Desoky, M.G. El-Shaarawy, A.M. Abdraboh, Mater. Sci. Eng. A 618, 389 (2014)CrossRefGoogle Scholar
  3. 3.
    A.K. Gain, L. Zhang, J. Mater. Sci. 27, 781 (2016)Google Scholar
  4. 4.
    M.M. A.S.M.A. Haseeb, S.L. Arafat, Y.M. Tay, Leong, J. Electron. Mater. 46, 5503 (2017)CrossRefGoogle Scholar
  5. 5.
    A.K. Gain, L. Zhang, J. Mater. Sci. 28, 9363 (2017)Google Scholar
  6. 6.
    H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)CrossRefGoogle Scholar
  7. 7.
    A.K. Gain, L. Zhang, J. Mater. Sci. 28, 4885 (2017)Google Scholar
  8. 8.
    Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)CrossRefGoogle Scholar
  9. 9.
    A.K. Gain, Y.C. Chan, A. Sharif, W.K.C. Yung, Microelectron. Eng. 86(11), 2347 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)CrossRefGoogle Scholar
  11. 11.
    A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 506, 216 (2010)CrossRefGoogle Scholar
  12. 12.
    A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloys Compd. 489(2), 678 (2010)CrossRefGoogle Scholar
  13. 13.
    A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. 26(9), 7039 (2015)Google Scholar
  14. 14.
    J.W. Yoon, J.H. Bang, C.W. Lee, S.B. Jung, J. Alloys Compd. 627, 276 (2015)CrossRefGoogle Scholar
  15. 15.
    A.K. Gain, L. Zhang, Microelectron. Reliab. 83, 101 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Pourmajidian, R. Mahmudi, A.R. Geranmayeh, S. Hashemizadeh, S. Gorgannejad, J. Electron. Mater. 45, 764 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, J. Han, L. Ma, Y. Zuo, F. Guo, J. Electron. Mater. 45, 6095 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Sahin, E. Cadirli, J. Mater. Sci.: Mater. Electron. 23, 484 (2012)Google Scholar
  19. 19.
    N. Chawla, Int. Mater. Rev. 54(6), 368 (2009)CrossRefGoogle Scholar
  20. 20.
    A.K. Gain, L. Zhang, J. Mater. Sci. 27(7), 7524 (2016)Google Scholar
  21. 21.
    A.K. Gain, L. Zhang, J. Mater. Sci. 27, 3982 (2016)Google Scholar
  22. 22.
    D.S. Steinberg, Vibration Analysis for Electronic Equipment, Second edn. (Wiley, New York, 1998)Google Scholar
  23. 23.
    A.K. Gain, L. Zhang, J. Alloys Compd. 617, 779 (2014)CrossRefGoogle Scholar
  24. 24.
    S.H. Chang, S.K. Wu, Scripta Mater. 63, 957 (2010)CrossRefGoogle Scholar
  25. 25.
    A.K. Gain, L. Zhang, J. Mater. Sci. 27, 11273 (2016)Google Scholar
  26. 26.
    S.H. Chang, S.K. Wu, Scripta Mater. 64, 757 (2011)CrossRefGoogle Scholar
  27. 27.
    E.H. Wong, S.K.W. Seah, V.P.W. Shim, Microelectron. Reliab. 48, 1747 (2008)CrossRefGoogle Scholar
  28. 28.
    X. Hu, Y. Li, Z. Min, J. Alloys Compd. 582, 341 (2014)CrossRefGoogle Scholar
  29. 29.
    G. Zeng, S.D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, M.A.A. Mohd Salleh, K. Nogita, J. Alloys Compd. 685, 471 (2016)CrossRefGoogle Scholar
  30. 30.
    A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275 (2016)CrossRefGoogle Scholar
  31. 31.
    A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Sci. Eng. A 662, 258 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49(1–2), 1 (2005)CrossRefGoogle Scholar
  33. 33.
    S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K.J. Puttlitz, JOM 55(6), 61 (2003)CrossRefGoogle Scholar
  34. 34.
    D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.K. Choi, D.Y. Shih, C. Goldsmith, K.J. Puttlitz, J. Mater. Res. 17(11), 2775 (2002)CrossRefGoogle Scholar
  35. 35.
    S.K. Seo, S.K. Kang, D.Y. Shih, H.M. Lee, J. Electron. Mater. 38(2), 257 (2009)CrossRefGoogle Scholar
  36. 36.
    A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman, Y. Xing, E.J. Cotts, J. Electron. Mater. 33(12), 1412 (2004)CrossRefGoogle Scholar
  37. 37.
    I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, O. Unal, J. Electron. Mater. 30, 1050 (2001)CrossRefGoogle Scholar
  38. 38.
    K.D. Kim, D.D.L. Chung, J. Electron. Mater. 31(9), 933 (2002)CrossRefGoogle Scholar
  39. 39.
    P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458 (2009)CrossRefGoogle Scholar
  40. 40.
    S.K. Wu, S.H. Chang, W.L. Tsia, H.Y. Bor, Mater. Sci. Eng. A 528, 6020 (2011)CrossRefGoogle Scholar
  41. 41.
    A.V. Granato, K. Lucke, J. Appl. Phys. 52, 7136 (1981)CrossRefGoogle Scholar
  42. 42.
    Z. Trojanova, W. Riehemann, H. Ferkel, P. Lukac, J. Alloys Compd. 310(1–2), 396 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Precision and Nano Processing Technologies, School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations