Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14462–14470 | Cite as

CdS thin films deposition by AACVD: effect of precursor type, decomposition temperature and solvent

  • Kevin I. Y. Ketchemen
  • Sixberth Mlowe
  • Linda D. Nyamen
  • Peter T. Ndifon
  • Neerish RevaprasaduEmail author
  • Paul O’Brien


Hexagonal cadmium sulfide (CdS) thin films were deposited on glass substrates by aerosol assisted chemical vapour deposition (AACVD) using cadmium(II) dithiocarbamate and xanthate complexes in tetrahydrofuran (THF) and mixed solvents (THF + chloroform) at 400 and 450 °C. The surface morphology and size of the CdS films determined using scanning electron microscopy, showed the formation of films of various morphologies depending on the precursor, the deposition temperature and solvent used. An increase in temperature resulted in an increase in particle size and a change in morphology with the formation of CdS films with distorted structures. The CdS films showed an overall blue shift in their absorption band edge (2.35–2.49 eV) compared to bulk CdS. In dithiocarbamates, a slight blue shift was observed with a shift to higher wavelengths with the reduction of the carbon chain of the dithiocarbamate and an increase in temperature. Films from xanthate complexes showed a strong blue shift at both deposition temperatures. The use of mixed THF + chloroform solvent at 450 °C showed the formation of films with irregular structures compared to those deposited using THF solvent alone, indicating the role of the solvent in shape direction of the films formation. The elemental composition determined by energy dispersive X-ray spectroscopy measurements revealed a 1:1 (Cd:S) ratio in all the samples confirming the stoichiometry of the CdS films.



The authors thank the Royal Society—Department For International Development (RS–DFID) capacity building initiative and the National Research Foundation (NRF) South Africa through the South African Research Chair Initiative (SARChi) for their financial support. The authors also acknowledge the University of Kwa-Zulu Natal for TEM analyses.


The study was funded by South African Agency for Science and Technology Advancement, DFID.

Supplementary material

10854_2018_9579_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2369 KB)


  1. 1.
    Y. Li, X. Li, C. Yang, Y. Li, J. Mater. Chem. 13, 2641 (2003)CrossRefGoogle Scholar
  2. 2.
    L.D. Nyamen, N. Revaprasadu, R.V. Pullabhotla, A.A. Nejo, P.T. Ndifon, M.A. Malik, P. O’Brien, Polyhedron 56, 62 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Nicolau, M. Dupuy, M. Brunel, J. Electrochem. Soc. 137, 2915 (1990)CrossRefGoogle Scholar
  4. 4.
    M. Nyman, K. Jenkins, M. Hampden-Smith, T. Kodas, E. Duesler, A. Rheingold, M.L. Liable-Sands, Chem. Mater. 10, 914 (1998)CrossRefGoogle Scholar
  5. 5.
    M. Wei, K.L. Choy, Chem. Vap. Depos. 8, 15 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Afifi, S. Mahmoud, A. Ashour, Thin Solid Films 263, 248 (1995)CrossRefGoogle Scholar
  7. 7.
    P. Němec, I. Němec, P. Nahalkova, Y. Němcová, F. Trojanek, P. Malý, Thin Solid Films 403, 9 (2002)CrossRefGoogle Scholar
  8. 8.
    Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Opt. Lett. 41, 3463 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, C. Sada, Chem. Vap. Depos. 10, 229 (2004)CrossRefGoogle Scholar
  10. 10.
    M.B. Hursthouse, M.A. Malik, M. Motevalli, P. O’Brien, Polyhedron 11, 45 (1992)CrossRefGoogle Scholar
  11. 11.
    D.M. Frigo, O.F. Khan, P. O’Brien, J. Cryst. Growth 96, 989 (1989)CrossRefGoogle Scholar
  12. 12.
    K. Ramasamy, M.A. Malik, P. O’Brien, J. Raftery, Dalton Trans. 39, 1460 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Patel, F. Mighri, A. Ajji, D. Tiwari, T.K. Chaudhuri, Appl. Phys. A 117, 1791 (2014)CrossRefGoogle Scholar
  14. 14.
    O. Vigil-Galán, J. Vidal-Larramendi, A. Escamilla-Esquivel, G. Contreras-Puente, F. Cruz-Gandarilla, G. Arriaga-Mejía, M. Chavarría-Castañeda, M. Tufiño-Velázquez, Phys. Status Solidi A 203, 2018 (2006)CrossRefGoogle Scholar
  15. 15.
    E. Albrasi, P.J. Thomas, P. O’Brien, J. Mater. Chem. C 1, 671 (2013)CrossRefGoogle Scholar
  16. 16.
    M.A. Malik, M. Afzaal, P. O’Brien, Chem. Rev. 110, 4417 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Barreca, A. Gasparotto, C. Maragno, R. Seraglia, E. Tondello, A. Venzo, V. Krishnan, H. Bertagnolli, Appl. Organomet. Chem. 19, 59 (2005)CrossRefGoogle Scholar
  18. 18.
    C. Byrom, M. Malik, P. O’Brien, P.A. White, D. Williams, Polyhedron 19, 211 (2000)CrossRefGoogle Scholar
  19. 19.
    M.A. Malik, M. Motevalli, T. Saeed, P. O’Brien, Adv. Mater. 5, 653 (1993)CrossRefGoogle Scholar
  20. 20.
    D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, J. Electrochem. Soc. 151, 428 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Moloto, N. Revaprasadu, P. O’Brien, M. Malik, J. Mater. Sci. Mater. Electron. 15, 313 (2004)CrossRefGoogle Scholar
  22. 22.
    C.Q. Nguyen, A. Adeogun, M. Afzaal, M.A. Malik, P. O’Brien, Chem. Commun. 20, 2182 (2006)CrossRefGoogle Scholar
  23. 23.
    D. Oyetunde, M. Afzaal, M.A. Vincent, I.H. Hillier, P. O’Brien, Inorg. Chem. 50, 2052 (2011)CrossRefGoogle Scholar
  24. 24.
    M.A. Ehsan, H.N. Ming, M. Misran, Z. Arifin, E.R. Tiekink, A.P. Safwan, M. Ebadi, W.J. Basirun, M. Mazhar, Chem. Vap. Depos. 18, 191 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Chunggaze, M.A. Malik, P. O’Brien, Adv. Funct. Mater. 7, 311 (1997)Google Scholar
  26. 26.
    S. Mlowe, L.D. Nyamen, P.T. Ndifon, M.A. Malik, J. Raftery, P. O’Brien, N. Revaprasadu, Inorg. Chim. Acta 434, 181 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Mlowe, D.J. Lewis, M.A. Malik, J. Raftery, E.B. Mubofu, P. O’Brien, N. Revaprasadu, New J. Chem. 38, 6073 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Rakhshani, J. Phys. 12, 4391 (2000)Google Scholar
  29. 29.
    L.D. Nyamen, V.S.R. Pullabhotla, A.A. Nejo, P. Ndifon, N. Revaprasadu, New J. Chem. 35, 1133 (2011)CrossRefGoogle Scholar
  30. 30.
    G.B. Shombe, E.B. Mubofu, S. Mlowe, N. Revaprasadu, Mater. Sci. Semicond. Process. 43, 230 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Dilag, H. Kobus, A.V. Ellis, Forensic Sci. Int. 187, 97 (2009)CrossRefGoogle Scholar
  32. 32.
    N. Chestnoy, T.D. Harris, R. Hull, L.E. Brus, J. Phys. Chem. 90, 3393 (1986)CrossRefGoogle Scholar
  33. 33.
    P. Yan, Y. Xie, Y. Qian, X. Liu, Chem. Commun. 14, 1293 (1999)CrossRefGoogle Scholar
  34. 34.
    P.D. McNaughter, S.A. Saah, M. Akhtar, K. Abdulwahab, M.A. Malik, J. Raftery, J.A.M. Awudza, P. O’Brien, Dalton Trans. 45, 16345 (2016)CrossRefGoogle Scholar
  35. 35.
    R. Díaz-Torres, S. Alvarez, Dalton Trans. 40, 10742 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kevin I. Y. Ketchemen
    • 1
    • 2
  • Sixberth Mlowe
    • 2
  • Linda D. Nyamen
    • 1
  • Peter T. Ndifon
    • 1
  • Neerish Revaprasadu
    • 2
    Email author
  • Paul O’Brien
    • 3
    • 4
  1. 1.Department of Inorganic ChemistryUniversity of Yaoundé IYaoundéCameroon
  2. 2.Department of ChemistryUniversity of ZululandKwaDlangezwaSouth Africa
  3. 3.School of ChemistryThe University of ManchesterManchesterUK
  4. 4.School of MaterialsThe University of ManchesterManchesterUK

Personalised recommendations