Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14445–14454 | Cite as

Effect of electrolytes on the electrochemical performance of nickel cobaltite–titania nanotubes composites as supercapacitive materials

  • Chi Wing Chua
  • Zulkarnain Zainal
  • Hong Ngee Lim
  • Sook-Keng Chang
Article
  • 77 Downloads

Abstract

The effects of electrolytes on the electrochemical performance of nickel cobaltite–titania nanotubes composites as electrochemical capacitors were evaluated. Four types of electrolytes were selected to assess their effects on the prepared composites, namely aqueous electrolytes of 1.0 M KCl, 1.0 M HCl, 1.0 M KOH; and an organic electrolyte, 0.27 M tetra-n-butylammonium tetrafluoroborate (TBATFB) ionic liquid salt in acetonitrile. The composites performed better in 1.0 M HCl and 1.0 M KOH, than in 1.0 M KCl and 0.27 M TBATFB, which suggested that aqueous electrolytes with non-neutral pH would improve the specific areal capacitance values of the composites. Results have shown optimal performance in 1.0 KOH, which endowed the composite with excellent rate capability up to 200 mV s−1. Cyclic voltammogram of the composite analysed in 1.0 M KOH produced a leaf-shaped like profile, with higher current densities towards more positive potentials. Charge–discharge analyses in 1.0 M KOH has shown that the composite possessed specific areal capacitance of up to 214.76 µF cm−2 when it was evaluated at the current density of 350 µA cm−2. The composite also retained up to 97.79% of its specific areal capacitance when current density was increased to 400 µA cm−2. This material has demonstrated potential application for electrochemical capacitors through its facile fabrication technique.

Notes

Acknowledgements

The authors would like to acknowledge financial support from Universiti Putra Malaysia (Grant No.: Putra Grant GPB 2017). The authors also thank Dr. Nurul Asma Samsudin for her advice on the synthesis of titania nanotubes.

References

  1. 1.
    K. Yasuda, P. Schmuki, Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochim. Acta 52(12), 4053–4061 (2007)CrossRefGoogle Scholar
  2. 2.
    Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, J.L. MacManus-Driscoll, Influence of anodisation voltage on the dimension of titania nanotubes. J. Alloys Compd. 503(2), 359–364 (2010)CrossRefGoogle Scholar
  3. 3.
    J.M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 621(2), 254–266 (2008)CrossRefGoogle Scholar
  4. 4.
    Z. Su, W. Zhou, Formation, microstructures and crystallization of anodic titanium oxide tubular arrays. J. Mater. Chem. 19(16), 2301–2309 (2009)CrossRefGoogle Scholar
  5. 5.
    C.C. Raj, R. Sundheep, R. Prasanth, Enhancement of electrochemical capacitance by tailoring the geometry of TiO2 nanotube electrodes. Electrochim. Acta 176, 1214–1220 (2015)CrossRefGoogle Scholar
  6. 6.
    J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 52(3), 1258–1264 (2006)CrossRefGoogle Scholar
  7. 7.
    Z.B. Xie, D.J. Blackwood, Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol. Electrochim. Acta 56(2), 905–912 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Regonini, A. Jaroenworaluck, R. Stevens, C.R. Bowen, Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf. Interface Anal. 42(3), 139–144 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Endut, M. Hamdi, W.J. Basirun, Supercapacitance of bamboo-type anodic titania nanotube arrays. Surf Coatings Technol 215, 75–78 (2013)CrossRefGoogle Scholar
  10. 10.
    O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18(1), 156–165 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Zhou, Y. Zhang, Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process. J. Power Sources 239, 128–131 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Shao, H. Li, M. Li, C. Li, C. Qu, B. Yang, Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87, 578–585 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Xie, J. Li, Y. Lai, Z. Zhang, Y. Liu, G. Zhang, H. Huang, Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3(5), 2202–2207 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Palmas, M. Mascia, A. Vacca, J. Llanos, E. Mena, Analysis of photocurrent and capacitance of TiO2 nanotube–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt. RSC Adv. 4(46), 23957–23965 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Janáky, G. Bencsik, Á Rácz, C. Visy, N.R. de Tacconi, W. Chanmanee, K. Rajeshwar, Electrochemical grafting of poly(3,4-ethylenedioxythiophene) into a titanium dioxide nanotube host network. Langmuir 26(16), 13697–13702 (2010)CrossRefGoogle Scholar
  16. 16.
    K. Siuzdak, M. Sawczak, A. Lisowska-Oleksiak, Fabrication and properties of electrode material composed of ordered titania nanotubes and pEDOT:PSS. Solid State Ion. 271(Supplement C), 56–62 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Xie, H. Du, Electrochemical capacitance performance of polypyrrole–titania nanotube hybrid. J. Solid State Electrochem. 16(8), 2683–2689 (2012)CrossRefGoogle Scholar
  18. 18.
    M.-D. Lu, S.-M. Yang, Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite. J. Colloid Interface Sci. 333(1), 128–134 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Zhou, Y. Zhang, Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate. J. Power Sources 272, 866–879 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, Y. Wang, Y. Qin, C. Yu, L. Cui, X. Shu, J. Cui, H. Zheng, Y. Zhang, Y. Wu, A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J. Solid State Chem. 246, 269–277 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Li, X. Wang, X. Yu, C. Ma, J. Zhao, Fabrication of MnO2-TiO2 nanotube arrays composite films through a one-step redox precipitation method. Int. J. Hydrog. Energy 41(47), 22162–22170 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.-G. Huang, X.-H. Zhang, X.-B. Chen, H.-Q. Wang, J.-R. Chen, X.-X. Zhong, Q.-Y. Li, Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3D composite electrode for supercapacitors. Int. J. Hydrog. Energy 40(41), 14331–14337 (2015)CrossRefGoogle Scholar
  23. 23.
    D. Guan, X. Gao, J. Li, C. Yuan, Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating. Appl. Surf. Sci. 300, 165–170 (2014)CrossRefGoogle Scholar
  24. 24.
    M.M. Momeni, I. Ahadzadeh, Fabrication of tungsten decorated titania nanotube arrays as electrode materials for supercapacitor applications. Int. J. Hydrog. Energy 40(29), 8769–8777 (2015)CrossRefGoogle Scholar
  25. 25.
    M.M. Momeni, Z. Nazari, A. Kazempour, M. Hakimiyan, S.M. Mirhoseini, Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf. Eng. 30(11), 775–778 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Xie, D. Fu, Supercapacitance of ruthenium oxide deposited on titania and titanium substrates. Mater. Chem. Phys. 122(1), 23–29 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Xie, C. Huang, L. Zhou, Y. Liu, H. Huang, Supercapacitor application of nickel oxide–titania nanocomposites. Compos. Sci. Technol. 69(13), 2108–2114 (2009)CrossRefGoogle Scholar
  28. 28.
    F. Gobal, M. Faraji, Fabrication of nanoporous nickel oxide by de-zincification of Zn–Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors. Electrochim. Acta 100, 133–139 (2013)CrossRefGoogle Scholar
  29. 29.
    F. Yang, J. Yao, F. Liu, H. He, M. Zhou, P. Xiao, Y. Zhang, Ni–Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. J. Mater. Chem. A 1(3), 594–601 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116(Supplement C), 129–136 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Lin, X. Shi, H. Yang, D. Fan, Y. Wang, K. Bi, Reduced graphene oxide-NiCo2O4 nanoflowers as efficient electrocatalysts for the oxygen reduction reaction. J. Alloys Compd. 720(Supplement C), 147–155 (2017)CrossRefGoogle Scholar
  32. 32.
    D. Pletcher, X. Li, S.W.T. Price, A.E. Russell, T. Sönmez, S.J. Thompson, Comparison of the spinels Co3O4 and NiCo2O4 as bifunctional oxygen catalysts in alkaline media. Electrochim. Acta 188(Supplement C), 286–293 (2016)CrossRefGoogle Scholar
  33. 33.
    L.-K. Wu, W.-Y. Wu, J. Xia, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, G.-Q. Zheng, Nanostructured NiCo@NiCoOx core-shell layer as efficient and robust electrocatalyst for oxygen evolution reaction. Electrochim. Acta 254(Supplement C), 337–347 (2017)CrossRefGoogle Scholar
  34. 34.
    S.K. Chang, Z. Zainal, K.B. Tan, N.A. Yusof, W. Yusoff, W.M. Daud, S. Prabaharan, Synthesis and electrochemical properties of nanostructured nickel–cobalt oxides as supercapacitor electrodes in aqueous media. Int. J. Energy Res. 39(10), 1366–1377 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Marcus, Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C. J. Chem. Phys. 137(15), 154501 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chi Wing Chua
    • 1
  • Zulkarnain Zainal
    • 1
    • 2
  • Hong Ngee Lim
    • 1
    • 2
  • Sook-Keng Chang
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations