Advertisement

Comparative study on the synthesis and photocatalytic performance of Bi2WO6 nanosheets prepared via molten salt and hydrothermal method

  • Gui Yang
  • Yujun Liang
  • Kai Li
  • Jian Yang
  • Yingli Zhu
  • Shiqi Liu
  • Rui Xu
Article
  • 66 Downloads

Abstract

In this study, Bi2WO6 nanosheets were synthesized via molten salt (M-Bi2WO6) and hydrothermal method (H-Bi2WO6), respectively. Powder X-ray diffraction and scanning electron microscopy measurements demonstrated that the as-prepared Bi2WO6 samples preferred orientated alone {001} plane in both hydrothermal and molten salt system, enabling the formation of Bi2WO6 nanosheets. The results of UV–vis diffuse reflection spectrum showed that the M-Bi2WO6 nanosheets exhibited an obvious red shift in visible light absorption band in comparison with H-Bi2WO6 nanosheets, and the band gap of M-Bi2WO6 and H-Bi2WO6 nanosheets was 2.49 and 2.62 eV, respectively. As a result, the M-Bi2WO6 nanosheets reached as high as 97.13% of photodegradation efficiency of Rhodamine B under 180 min of sunlight irradiation, which was two times higher than that of the H-Bi2WO6 nanosheets (86.88%). Meanwhile, the photodegradation rate over M-Bi2WO6 (97.30%) for TC degradation was about two times higher than that of H-Bi2WO6 (78.58%). The much-enhanced photocatalytic performance of M-Bi2WO6 nanosheets was attributed to the better crystallinity, higher light-harvesting capability and superior sorption capacity. Basing on the detailed experimental study and analysis, this work could be a practical guidance for the fabrication of Bi2WO6-based microstructures with enhanced photocatalytic efficiency.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21571162), the Guangdong Province Enterprise-University-Academy Collaborative Project (No. 2012B091100474).

Supplementary material

10854_2018_9565_MOESM1_ESM.docx (5.6 mb)
Supplementary material 1 (DOCX 5712 KB)

References

  1. 1.
    X.C. Meng, Z.S. Zhang, J. Mol. Catal. A 423, 533–549 (2016)CrossRefGoogle Scholar
  2. 2.
    R.A. He, S.W. Cao, P. Zhou, J.G. Yu, Chin. J. Catal. 35, 989–1007 (2014)CrossRefGoogle Scholar
  3. 3.
    W.G. Zhang, J. Liu, Z.Y. Guo, S.W. Yao, H.Z. Wang, J. Mater. Sci. 28, 9505–9513 (2017)Google Scholar
  4. 4.
    S.J. Li, X.F. Shen, J.S. Liu, L.S. Zhang, Environ. Sci. Nano. 4, 1155–1167 (2017)CrossRefGoogle Scholar
  5. 5.
    S.J. Li, S.W. Hu, W. Jiang, Y.P. Liu, Y.T. Zhou, J. Colloid Interface Sci. 521, 42–49 (2018)CrossRefGoogle Scholar
  6. 6.
    H.Z. An, Y. Du, T.M. Wang, C. Wang, W.C. Hao, J.Y. Zhang, Rare Met. 27, 243–250 (2008)CrossRefGoogle Scholar
  7. 7.
    X.C. Meng, Z.S. Zhang, J. Photochem. Photobiol. A 310, 33–44 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Rengaraj, X.Z. Lia, P.A. Tanner, Z.F. Pan, G.K.H. Pang, J. Mol. Catal. A 247, 36–43 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Yang, Y.J. Liang, K. Li, Y.L. Zhu, S.Q. Liu, R. Xu, W. Zhou, J. Alloys Compd. 725, 1144–1157 (2017)CrossRefGoogle Scholar
  10. 10.
    H.Y. Jiang, P. Li, G. Liu, J. Ye, J. Lin, J. Mater. Chem. A 3, 5119–5125 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K.H. Chu, P.K. Wong, Appl. Catal. B 187, 281–290 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Ren, K. Zhang, J. Liu, H. Luo, Y. Huang, X. Yu, CrystEngComm 14, 4384–4390 (2012)CrossRefGoogle Scholar
  13. 13.
    Z.X. Lin, J.M. Gong, P. Fu, J. Mater. Sci. 28, 4424–4430 (2017)Google Scholar
  14. 14.
    Y. Zhang, W. Li, Z. Sun, Q. Zhang, L. Wang, Z. Chen, J. Alloys Compd. 713, 78–86 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Li, Y.J. Liang, J. Yang, Q. Gao, Y.L. Zhu, S.Q. Liu, R. Xu, X.Y. Wu, J. Alloys Compd. 695, 238–249 (2017)CrossRefGoogle Scholar
  16. 16.
    L.W. Zhang, T.G. Xua, X. Zhao, Y.F. Zhu, Appl. Catal. B 98, 138–146 (2010)CrossRefGoogle Scholar
  17. 17.
    S.J. Li, S.W. Hu, J.L. Zhang, W. Jiang, S.J. Liu, J. Colloid Interface Sci. 497, 93–101 (2017)CrossRefGoogle Scholar
  18. 18.
    N.A. Mcdowell, K.S. Knight, P. Lightfoot, Chem.-Eur. J. 12, 1493–1499 (2006)CrossRefGoogle Scholar
  19. 19.
    H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, Phys. Chem. B. 109, 22432–22439 (2005)CrossRefGoogle Scholar
  20. 20.
    S.G. Kumar, K.S.R.K. Rao, Appl. Surf. Sci. 355, 939–958 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603–2636 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Wang, H. Yang, T. Xian, L.J. Di, R.S. Li, X.X. Wang, J. Nanomater. 16, 1–7 (2015)Google Scholar
  23. 23.
    L.H. Hoang, N.D. Phu, P.D. Chung, P.C. Guo, J. Mater. Sci. Mater. Electron. 28, 12191–12196 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Shang, W.Z. Wang, J. Ren, S.M. Sun, L. Wang, L. Zhang, J. Mater. Chem. 19, 6213–6218 (2009)CrossRefGoogle Scholar
  25. 25.
    Z.H. Sun, J.J. Guo, S.M. Zhu, J. Ma, Y.L. Liao, D. Zhang, RSC Adv. 4, 27963–27970 (2014)CrossRefGoogle Scholar
  26. 26.
    D.X. Wu, H.T. Zhu, C.Y. Zhang, L. Chen, Chem. Commun. 46, 7250–7252 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Shang, W.Z. Wang, H.L. Xu, Cryst. Growth Des. 9, 991–996 (2009)CrossRefGoogle Scholar
  28. 28.
    D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F.F. Shi, K.L. Fan, J. Phys. Chem. C 113, 4369–4374 (2009)CrossRefGoogle Scholar
  29. 29.
    M.J. Chen, Y. Huang, S.C. Lee, Chin. J. Catal. 38, 348–356 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Lou, J.N. Deng, L.L. Wang, L.J. Wang, T. Zhang, Sens. Actuators B 182, 217–220 (2013)CrossRefGoogle Scholar
  31. 31.
    J.K. Xiao, W. Dong, C.W. Song, Y.T. Yu, L. Zhang, C. Li, Y.Y. Yin, Mater. Sci. Semicond. Process. 40, 463–467 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.Y. Zhao, Y.B. Wang, E.Z. Liu, J. Fan, X.Y. Hu, Appl. Surf. Sci. 436, 854–864 (2018)CrossRefGoogle Scholar
  33. 33.
    S.C. Zhang, C. Zhang, Y. Man, Y.F. Zhu, J. Solid State Chem. 179, 62–69 (2006)CrossRefGoogle Scholar
  34. 34.
    Z.J. Zhang, W.Z. Wang, M. Shang, W.Z. Yin, J. Hazard. Mater. 177, 1013–1018 (2010)CrossRefGoogle Scholar
  35. 35.
    G.K. Zhang, F. Lu, M. Li, J.L. Yang, X.Y. Zhang, B.B. Huang, J. Phys. Chem. Solids 71, 579–582 (2010)CrossRefGoogle Scholar
  36. 36.
    H.D. Xie, D.Z. Shen, X.Q. Wang, G.Q. Shen, Mater. Chem. Phys. 103, 334–339 (2007)CrossRefGoogle Scholar
  37. 37.
    Y.H. Shi, S.H. Feng, C.S. Cao, Mater. Lett. 44, 215–218 (2000)CrossRefGoogle Scholar
  38. 38.
    L.J. Xie, J.F. Ma, J. Zhou, Z.Q. Zhao, H. Tian, Y.G. Wang, J.T. Tao, X.Y. Zhu, J. Am. Ceram. Soc. 89, 1717–1720 (2006)CrossRefGoogle Scholar
  39. 39.
    L. Chen, J. He, Y. Liu, P. Chen, C. Tong, A. Shuang, F. Yin, Chin. J. Catal. 37, 780–791 (2016)CrossRefGoogle Scholar
  40. 40.
    C.Y. Xu, L. Zhen, R.S. Yang, Z.L. Wang, J. Am. Chem. Soc. 129, 15444–15445 (2007)CrossRefGoogle Scholar
  41. 41.
    L. Zhou, C.G. Jin, Y. Yu, F.L. Chi, S.L. Ran, Y.H. Lv, J. Alloys Compd. 680, 301–308 (2016)CrossRefGoogle Scholar
  42. 42.
    K.Y. Lin, B.J. Ma, W.G. Su, W.Y. Liu, Appl. Surf. Sci. 286, 61–65 (2013)CrossRefGoogle Scholar
  43. 43.
    S.M. Sun, W.Z. Wang, L. Zhang, E.P. Gao, D. Jiang, Y.F. Sun, Y. Xie, ChemSusChem 6, 1873–1877 (2013)CrossRefGoogle Scholar
  44. 44.
    X.B. Cao, L.L. Zhi, Y.H. Li, F. Fang, X. Cui, L.J. Ci, K.X. Ding, J.Q. Wei, ACS Appl. Mater. Interfaces 9, 32868–32875 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Ren, W.Z. Wang, S.M. Sun, L. Zhang, J. Chang, Appl. Catal. B 92, 50–55 (2009)CrossRefGoogle Scholar
  46. 46.
    B. Feng, Z.Y. Wu, J.S. Liu, K.J. Zhu, Z.Q. Li, X. Jin, Y.D. Hou, Q.Y. Xi, M.Q. Cong, P.C. Liu, Q.L. Gu, Appl. Catal. B 206, 242–251 (2017)CrossRefGoogle Scholar
  47. 47.
    N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, Catal. Today 252, 113–119 (2015)CrossRefGoogle Scholar
  48. 48.
    J. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y. Xu, L. Xu, H. Li, M. Ji, RSC Adv. 4, 82–90 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gui Yang
    • 1
    • 2
  • Yujun Liang
    • 1
    • 2
  • Kai Li
    • 1
    • 2
  • Jian Yang
    • 1
    • 2
  • Yingli Zhu
    • 1
    • 2
  • Shiqi Liu
    • 1
    • 2
  • Rui Xu
    • 1
    • 2
  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanChina
  2. 2.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina

Personalised recommendations