Green synthesis and characterization of magnetic NiFe2O4@ZnO nanocomposite and its application for photocatalytic degradation of organic dyes

  • Sajjad Moradi
  • Saeid Taghavi Fardood
  • Ali RamazaniEmail author


In this work, for the first time, magnetic NiFe2O4@ZnO nanocomposite was synthesized using tragacanth gel by the novel sol–gel method. NiFe2O4@ZnO magnetic nanocomposite was investigated using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX). The NiFe2O4@ZnO MNCs exhibit ferromagnetic behavior at room temperature, with a saturation magnetization of 15.22 emu/g and a coercivity of 150 Oe. XRD results show that NiFe2O4@ZnO nanocomposite corresponds to the hexagonal wurtzite of ZnO and the spinel cubic structure of NiFe2O4. The present magnetic nanocomposite displays high photocatalytic activity for the removal of direct blue 129 dye and reactive blue 21 dye under irradiation with visible light. The results demonstrated that the catalyst can degrade ca. 98% of the direct blue 129 and ca. 96% of the reactive blue 21 dyes. The current nanocomposite can be separated from the reaction mixture using an external permanent magnet and its high performance saved even after recycling fifth times.


  1. 1.
    J. Manna, S. Akbayrak, S. Özkar, Appl. Catal. B 208, 104 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci. Mater. Electron. 27, 4800 (2016)CrossRefGoogle Scholar
  3. 3.
    F. Davar, A. Majedi, A. Abbasi, J. Mater. Sci. Mater. Electron. 28, 4871 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Kodama, J. Magn. Magn. Mater. 200, 359 (1999)CrossRefGoogle Scholar
  6. 6.
    J.M. Chan, L. Zhang, K.P. Yuet, G. Liao, J.-W. Rhee, R. Langer, O.C. Farokhzad, Biomaterials 30, 1627 (2009)CrossRefGoogle Scholar
  7. 7.
    X. Gong, S. Peng, W. Wen, P. Sheng, W. Li, Adv. Funct. Mater. 19, 292 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Chen, S. Cao, J. Yao, F. Jiang, J. Taiwan Inst. Chem. Eng. 71, 189 (2017)CrossRefGoogle Scholar
  9. 9.
    C.W. Lai et al., Small 4, 218 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, Nanotechnology 18, 035602 (2007)CrossRefGoogle Scholar
  11. 11.
    C. Cannas et al., Chem. Mater. 22, 3353 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Liu, D. Geng, Z. Zhang, Appl. Phys. Lett. 92, 243110 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Sun, C. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)CrossRefGoogle Scholar
  14. 14.
    W.S. Seo et al. Nat. Mater. 5, 971 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Xu, W. Shangguan, J. Yuan, M. Chen, J. Shi, Appl. Catal., B 71, 177 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Akbar Hoseini, S. Khademolhoseini, J. Mater. Sci. Mater. Electron. 27, 5943 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Patil, D. Nadargi, J. Gurav, I. Mulla, S. Suryavanshi, Mater. Lett. 124, 144 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Wang, T. Xie, Y. Li, Nano Res. 2, 30 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Umar, M. Chauhan, S. Chauhan, R. Kumar, G. Kumar, S. Al-Sayari, S. Hwang, A. Al-Hajry, J. Colloid Interface Sci. 363, 521 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Sorbiun, E. Shayegan Mehr, A. Ramazani, S. Taghavi Fardood, Int. J. Environ. Res. 12, 29 (2018)CrossRefGoogle Scholar
  21. 21.
    I. Malagurski, S. Levic, M. Pantic, D. Matijasevic, M. Mitric, V. Pavlovic, S. Dimitrijevic-Brankovic, Carbohydr. Polym. 165, 313 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Ali, S. Ambreen, Q. Maqbool, S. Naz, M.F. Shams, M. Ahmad, A.R. Phull, M. Zia, J. Phys. Chem. Solids 98, 174 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Liu, J. Jiang, D. Geng, B. Li, Z. Han, W. Liu, Z. Zhang, Appl. Phys. Lett. 94, 053119 (2009)CrossRefGoogle Scholar
  24. 24.
    M.-S. Cao, X.-L. Shi, X.-Y. Fang, H.-B. Jin, Z.-L. Hou, W. Zhou, Y.-J. Chen, Appl. Phys. Lett. 91, 203110 (2007)CrossRefGoogle Scholar
  25. 25.
    R. Ghosh Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2011)CrossRefGoogle Scholar
  26. 26.
    X.-F. Wu, H.-Y. Song, J.-M. Yoon, Y.-T. Yu, Y.-F. Chen, Langmuir 25, 6438 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Cao et al. Mater. Sci. Eng., B 175, 56 (2010)CrossRefGoogle Scholar
  28. 28.
    Y.A. Barnakov, M.H. Yu, Z. Rosenzweig, Langmuir 21, 7524 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Taghavi Fardood, A. Ramazani, Z. Golfar, S.W. Joo, J. Appl. Chem. Res. 11, 19 (2017)Google Scholar
  30. 30.
    S. Taghavi Fardood, K. Atrak, A. Ramazani, J. Mater. Sci. Mater. Electron. 28, 10739 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Atrak, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. 29, 6702 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Sun, L. Cao, L. Lu, Nano Res. 4, 550 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Sorbiun, E. Shayegan Mehr, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. 29, 2806 (2018)CrossRefGoogle Scholar
  34. 34.
    E. Shayegan Mehr, M. Sorbiun, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. 29, 1333 (2018)CrossRefGoogle Scholar
  35. 35.
    H.A. Alhassani, M.A. Rauf, S.S. Ashraf, Dyes Pigm. 75, 395 (2007)CrossRefGoogle Scholar
  36. 36.
    H. Chen, J. Motuzas, W. Martens, J.C. Diniz da Costa. Appl. Catal., B 221, 691 (2018)CrossRefGoogle Scholar
  37. 37.
    M.C. Silva, A.D. Corrêa, M.T.S.P. Amorim, P. Parpot, J.A. Torres, P.M.B. Chagas, J. Mol. Catal. B 77, 9 (2012)CrossRefGoogle Scholar
  38. 38.
    T. Kanagaraj, S. Thiripuranthagan, Appl. Catal. B 207, 218 (2017)CrossRefGoogle Scholar
  39. 39.
    K. Klemola, Kuopio Univ Publ C Nat Environ Sci 241, 1 (2008)Google Scholar
  40. 40.
    Y. Zhang, F. Gao, B. Wanjala, Z. Li, G. Cernigliaro, Z. Gu, Appl. Catal. B 199, 504 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Taghavi Fardood, A. Ramazani, S.W. Joo, J. Appl. Chem. Res. 12, 8 (2018)Google Scholar
  42. 42.
    S. Taghavi Fardood, A. Ramazani, S. Moradi, Chem. J. Mold. 12, 115 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Zohuriaan, F. Shokrolahi, Polym. Test. 23, 575 (2004)CrossRefGoogle Scholar
  44. 44.
    S. Taghavi Fardood, Z. Golfar, A. Ramazani, J. Mater. Sci. Mater. Electron. 28, 17002 (2017)CrossRefGoogle Scholar
  45. 45.
    A. Hasanpour, M. Niyaifar, M. Asan, J. Amighian, J. Magn. Magn. Mater. 334, 41 (2013)CrossRefGoogle Scholar
  46. 46.
    H. Liu, J. Wu, J.H. Min, X. Zhang, Y.K. Kim, Mater. Res. Bull. 48, 551 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Farhadi, K. Pourzare, S. Sadeghinejad, J. Nanostruct. Chem. 3, 16 (2013)CrossRefGoogle Scholar
  48. 48.
    H.-Y. Zhu, R. Jiang, Y.-Q. Fu, R.-R. Li, J. Yao, S.-T. Jiang, Appl. Surf. Sci. 369, 1 (2016)CrossRefGoogle Scholar
  49. 49.
    D. Lv, D. Zhang, X. Liu, Z. Liu, L. Hu, X. Pu, H. Ma, D. Li, J. Dou, Sep. Purif. Technol. 158, 302 (2016)CrossRefGoogle Scholar
  50. 50.
    H.S. Kim, D. Kim, B.S. Kwak, G.B. Han, M.-H. Um, M. Kang, Chem. Eng. J. 243, 272 (2014)CrossRefGoogle Scholar
  51. 51.
    S. Duangjam, K. Wetchakun, S. Phanichphant, N. Wetchakun, Mater. Lett. 181, 86 (2016)CrossRefGoogle Scholar
  52. 52.
    J. Zheng, X. Song, X. Liu, W. Chen, Y. Li, J. Guo, Mater. Lett. 73, 143 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sajjad Moradi
    • 1
  • Saeid Taghavi Fardood
    • 1
  • Ali Ramazani
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran
  2. 2.Research Institute of Modern Biological Techniques (RIMBT)University of ZanjanZanjanIran

Personalised recommendations