Skip to main content

Advertisement

Log in

Template-free growth of coral-like Ge nanorod bundles via UV-assisted ionic liquid electrodeposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Germanium (Ge) is an important semiconductor material in optoelectronic devices and is being researched in energy storage fields. Ge nanostructure materials with different morphologies may lead to distinctly different application performances. In this work, Ge nanorod architectures were successfully template-free electrodeposited on ITO substrate from the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([Emim]Tf2N) containing dissolved GeCl4 with the assistance of UV light. The UV irradiation influences the conformation of imidazolium rings of [Emim]+ adsorbed during the deposition process. A solution template has been formed on the surface of the electrode which inhibited the lateral growth of Ge nuclei and promoted the growth of Ge nanorod structures. Consequently, the coral-like Ge nanorod bundles (NRBs) has been obtained. This method provides attractive prospects for the other semiconductor nanorod structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhan, X. Li, D.Y. Lei, S. Wu, C. Wang, Y. Li, Acs Photonics 1, 483 (2014)

    Article  Google Scholar 

  2. A.C. Meng, C.S. Fenrich, M.R. Braun, J.P. Mcvittie, A.F. Marshall, J.S. Harris, P.C. McIntyre, Nano Lett. 16, 7521 (2016)

    Article  Google Scholar 

  3. V. Narayan, T.A. Nguyen, R. Mansell, D. Ritchie, G. Mussler, Phys. Status Solidi-R 10, 253 (2016)

    Article  Google Scholar 

  4. M. Voros, S. Wippermann, B. Somogyi, A. Gali, D. Rocca, G. Galli, G. Zimanyi, J. Mater. Chem. A 2, 9820 (2014)

    Article  Google Scholar 

  5. T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O’ Dwyer, K.M. Ryan, Nano Lett. 14, 716 (2014)

    Article  Google Scholar 

  6. X. Xiao, X. Li, S. Zheng, J. Shao, H. Xue, H. Pang, Adv. Mater. Interfaces 4, 1600798 (2017)

    Article  Google Scholar 

  7. S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu, Z. Li, Angew. Chem. Int. Edit. 55, 7898 (2016)

    Article  Google Scholar 

  8. O. Skibitzki, G. Capellini, Y. Yamamoto, P. Zaumseil, M.A. Schubert, T. Schroeder, A. Ballabio, R. Bergamaschini, M. Salvalaglio, L. Miglio, F. Montalenti, ACS Appl. Mater. Inter. 8, 26374 (2016)

    Article  Google Scholar 

  9. B.M. Nolan, E.K. Chan, X. Zhang, E. Muthuswamy, K.V. Benthem, S.M. Kauzlarich, ACS Nano 10, 5391 (2016)

    Article  Google Scholar 

  10. S. Fang, L. Shen, P. Nie, G. Xu, J. Wang, X. Zhang, J. Mater. Sci. 49, 2279 (2014)

    Article  Google Scholar 

  11. L. Ma, J. Gu, E. Fahrenkrug, S. Maldonado, J. Electrochem. Soc. 161, D3044 (2014)

    Article  Google Scholar 

  12. B.J. Lokhande, R.C. Ambare, R.S., Mane, S.R. Bharadwaj, Curr. Appl. Phys. 13, 985 (2013)

    Article  Google Scholar 

  13. X. Liu, J. Hao, X. Liu, C. Chi, N. Li, F. Endres, Y. Zhang, Y. Li, J. Zhao, Chem. Commun. 51, 2064 (2015)

    Article  Google Scholar 

  14. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Appl. Surf. Sci. 349, 887 (2015)

    Article  Google Scholar 

  15. F. Endres, Electrochem. Solid St. 5, C38 (2002)

    Article  Google Scholar 

  16. X. Liu, J. Zhao, J. Hao, B.L. Su, Y. Li, J. Mater. Chem. A 1, 5076 (2013)

    Google Scholar 

  17. X. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, F. Endres, Angew. Chem. Int. Edit. 48, 2703 (2009)

    Article  Google Scholar 

  18. R. Al-Salman, J. Mallet, M. Molinari, P. Fricoteaux, F. Martineau, M. Troyon, S.Z.E. Abedin, F. Endres, Phys. Chem. Chem. Phys. 10, 6233 (2008)

    Article  Google Scholar 

  19. S.Z.E. A.Willert, F. Abedin, Endres, Aust. J. Chem. 67, 875 (2014)

    Article  Google Scholar 

  20. G. Pulletikurthi, M.S. Ghazvini, A. Prowald, Z.E.A. Sherif, F. Endres, Chemelectrochem 2, 1361 (2015)

    Article  Google Scholar 

  21. C.J. Su, Y.T. Hsieh, C.C. Chen, I.W. Sun, Electrochem. Commun. 34, 170 (2013)

    Article  Google Scholar 

  22. Y.T. Hsieh, M.C. Lai, H.L. Huang, I.W. Sun, Electrochim. Acta 117, 217 (2014)

    Article  Google Scholar 

  23. C. Fournier, F. Favier, Electrochem. Commun. 13, 1252 (2011)

    Article  Google Scholar 

  24. J.M. Yang, Y.T. Hsieh, D.X. Zhuang, I.W. Sun, Electrochem. Commun. 13, 1178 (2011)

    Article  Google Scholar 

  25. J. Hao, Y. Yang, J. Zhao, X. Liu, F. Endres, C. Chi, B. Wang, X. Liu, Y. Li, Nanoscale 9, 8481 (2017)

    Article  Google Scholar 

  26. A. Lahiri, S.Z.E. Abedin, F. Endres, J. Phys. Chem. C 116, 17739 (2012)

    Article  Google Scholar 

  27. Z. Liu, T. Cui, T. Lu, M.S. Ghazvini, F. Endres, J. Phys. Chem. C 120, 20224 (2016)

    Article  Google Scholar 

  28. R.S. Booth, C.J. Annesley, J.W. Young, K.M. Vogelhuber, A. Boatz, J.A. Stearns, Phys. Chem. Chem. Phys. 18, 17037 (2016)

    Article  Google Scholar 

  29. H. Li, F. Endres, R. Atkin, Phys. Chem. Chem. Phys. 15, 14624 (2013)

    Article  Google Scholar 

  30. A. Lahiri, M. Olschewski, R. Gustus, N. Borisenko, F. Endres, Phys. Chem. Chem. Phys. 18, 14782 (2016)

    Article  Google Scholar 

  31. J. Qin, X. Wang, M. Cao, C. Hu, Chem. Eur. J. 20, 9675 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank National Natural Science Foundation of China (No. 51572058, 51502057), National Key Research & Development Program (2016YFB0303903, 2016YFE0201600), the International Science & Technology Cooperation Program of China (2013DFR10630, 2015DFE52770), and Foundation of Equipment Development Department (6220914010901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiupeng Zhao or Yao Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, C., Hao, J., Yang, Y. et al. Template-free growth of coral-like Ge nanorod bundles via UV-assisted ionic liquid electrodeposition. J Mater Sci: Mater Electron 29, 14105–14110 (2018). https://doi.org/10.1007/s10854-018-9542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9542-x

Navigation