Advertisement

Solid porous Ag–Ag interface bonding and its application in the die-attached modules

Article
  • 47 Downloads

Abstract

Solid porous Ag–Ag interface bonding was introduced with the hillocks growth on a solid porous Ag surface. Porous Ag was fabricated on both Cu substrate and Si die by sintering a hybrid Ag paste. The size, density of grown hillocks was investigated at different heating temperature and time to provide an optimized condition in the interface bonding. The growth mechanism of hillocks on the solid porous Ag structure was discussed and analyzed in detail based on stress-induced migration and finite element stress analysis where solid porous Ag was reduced to a polycrystalline structure. The interface between two porous Ag structures bonded together in the die-attached structure with the bonding strength over 30 MPa, considerably stronger than that of traditional Sn–Pb solders. Furthermore, TEM observation revealed that Ag particles with the size of tens nanometers formed between the solid porous Ag–Ag interface, accumulate together and thus bridged the interface. This study provided a new attractive bonding technology based on the solid porous Ag structure in the die-attached module structures for large area bonding and thicker bonding layer design.

Notes

Acknowledgements

This work was supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. JPMJAL1610), the authors also thankful to the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.

References

  1. 1.
    P.G. Neudeck, R.S. Okojie, L.-Y. Chen, High-temperature electronics—a role for wide bandgap semiconductors. Proc. IEEE 90, 1065–1076 (2002)CrossRefGoogle Scholar
  2. 2.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metal. Mater. Trans. B 41, 824–832 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, Mechanical deformation of sintered porous Ag die attach at high temperature and its size effect for wide-band gap power device design. J. Electron. Mater. 46, 1576–1586 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)CrossRefGoogle Scholar
  5. 5.
    K.S. Siow, Y.T. Lin, Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 138, 020804 (2016)CrossRefGoogle Scholar
  6. 6.
    T. Wang, X. Chen, G.-Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Chen, S. Nagao, K. Suganuma, J. Jiu, H. Zhang, T. Sugahara, T. Iwashige, K. Sugiura, K. Tsuruta, Self-healing of cracks in Ag joining layer for die-attachment in power devices. Appl. Phys. Lett. 109, 093503 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, C. Chen, J. Jiu, S. Nagao, K. Suganuma, High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device. J. Mater. Sci.: Mater. Electron. 29, 8854–8862 (2018)Google Scholar
  10. 10.
    Y. Xie, Y. Wang, Y. Mei, H. Xie, K. Zhang, S. Feng, K.S. Siow, X. Li, G.-Q. Lu, Rapid sintering of nano-Ag paste at low current to bond large area (> 100 mm2) power chips for electronics packaging. J. Mater. Process. Technol. 255, 644–649 (2018)CrossRefGoogle Scholar
  11. 11.
    C. Oh, S. Nagao, T. Sugahara, K. Suganuma, Hillock growth dynamics for Ag stress migration bonding. Mater. Lett. 137, 170–173 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Oh, S. Nagao, T. Kunimune, K. Suganuma, Pressureless wafer bonding by turning Hillocks into abnormal grain growth in Ag films. Appl. Phys. Lett. 104, 161603 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Saka, F. Yamaya, H. Tohmyoh, Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scripta Mater. 56, 1031–1034 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Lu, Y. Li, M. Saka, Growth of Ag micro/nanoparticles using stress migration from multilayered metallic structure. Appl. Surf. Sci. 351, 1011–1015 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Noh, C. Chen, H. Zhang, K. Suganuma, Large area die-attachment by silver stress migration bonding for power device applications. Microelectron. Reliab. (In press)Google Scholar
  16. 16.
    T. Kunimune, M. Kuramoto, S. Ogawa, T. Sugahara, S. Nagao, K. Suganuma, Ultra thermal stability of LED die-attach achieved by pressureless Ag stress-migration bonding at low temperature. Acta Mater. 89, 133–140 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Chen, S. Nagao, J. Jiu, H. Zhang, T. Sugahara, K. Suganuma, Dry-growth of silver single-crystal nanowires from porous Ag structure. Appl. Phys. Lett. 108, 263105 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Chen, S. Noh, H. Zhang, C. Choe, J. Jiu, S. Nagao, K. Suganum, Bonding technology based on solid porous Ag for large area chips. Scripta Mater. 146, 123–127 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Rackauskas, H. Jiang, J.B. Wagner, S.D. Shandakov, T.W. Hansen, E.I. Kauppinen, A.G. Nasibulin, In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 14, 5810–5813 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.J. Park, C.V. Thompson, The effects of the stress dependence of atomic diffusivity on stress evolution due to electromigration. J. Appl. Phys. 82, 4277 (1997)CrossRefGoogle Scholar
  21. 21.
    T. Frolov, W.J. Boettinger, Y. Mishin, Atomistic simulation of hillock growth. Acta Mater 58, 5471–5480 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Wang, Y. Ju, M. Chen, A. Hosoi, Y. Song, Y. Iwasaki, Room-temperature bonding technique based on copper nanowire surface fastener. Appl. Phys. Express 6, 035001 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Ju, M. Amano, M. Chen, Mechanical and electrical cold bonding based on metallic nanowire surface fasteners. Nanotechnology 23, 365202 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, T. Komatsu, Silver nanosintering: a lead-free alternative to soldering. Appl. Phys. A 93, 467–470 (2008)CrossRefGoogle Scholar
  25. 25.
    P. Wang, Y. Ju, M. Chen, Appl. Surf. Sci. 349, 774 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci.: Mater. Electron. 29, 1785–1796 (2018)Google Scholar
  27. 27.
    S. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y. Liu, S. Lin, K. Suganuma, Nano-volcanic eruption of silver, Sci. Rep. 6, 34769 (2016)CrossRefGoogle Scholar
  28. 28.
    S.J. Noh, C. Choe, C. Chen, K. Suganuma, Heat-resistant die-attach with cold-rolled Ag sheet. Appl. Phys. Express 11, 016501 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations