Advertisement

Photoluminescence characteristics of Sm3+ and Eu3+ doped yttrium oxide phosphors

  • Tarkeshwari Verma
  • Sadhana Agrawal
Article
  • 106 Downloads

Abstract

A series of xSm3+ doped and yEu3+, xSm3+ (x = 0.5–2 mol% and y = 1 mol%) doped yttrium oxide phosphors have been prepared via solid-state reaction route. The study of phase purity, morphology, elemental composition and molecular activities of synthesized phosphors were done by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy techniques, respectively. Photoluminescence characteristics emission spectra were recorded with 402 nm excitation wavelength. The most intense peak at 619 nm was due to 4G5/2 to 6H7/2 transition of samarium (1 mol%) ions in Y2O3:Sm3+ phosphor. Similarly, strong red emission was observed at 635 nm attributing to 4G5/2 to 6H7/2 transition of samarium ions in Y2O3:Eu3+, Sm3+(1:1.5 mol%) phosphor under excitation wavelength 423 nm. The energy transfer from europium ions to samarium ions are responsible for enhanced red emission. The photometric characteristics such as decay parameters, correlated color temperature and Commission International de coordinates were also computed for the synthesized phosphors.

References

  1. 1.
    D. Avram, B. Cojocaru, M. Florea, C. Tiseanu, Advances in luminescence of lanthanide doped Y2O3: case of S6 sites. Opt. Mater. Express 6(5), 1636 (2016).  https://doi.org/10.1364/Ome.6.001635 CrossRefGoogle Scholar
  2. 2.
    S. Som, S. Das, S. Dutta, H.G. Visser, M.K. Pandey, P. Kumar, R.K. Dubeye, S.K. Sharma, Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis. RSC Adv. 5, 70887–70898 (2015).  https://doi.org/10.1039/c5ra13247a CrossRefGoogle Scholar
  3. 3.
    R.P. Leavitt, J.B. Gruber, N.C. Chang, C.A. Morrison, Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites. J. Chem. Phys. 76(10), 4775–4788 (1982).  https://doi.org/10.1063/1.442796 CrossRefGoogle Scholar
  4. 4.
    Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, G. Boulon, Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal. J. Lumin. 170, 513–519 (2016).  https://doi.org/10.1016/j.jlumin.2015.04.017 CrossRefGoogle Scholar
  5. 5.
    M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, G. Boulon, Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3 sesquioxide either as ceramics or crystal. J. Lumin. 169, 606–611 (2016).  https://doi.org/10.1016/j.jlumin.2014.12.063 CrossRefGoogle Scholar
  6. 6.
    L. Ben Farhata, M. Amami, E.K. Hlil, R. Ben Hassena, Structural and vibrational study of C-type doped rare earth sesquioxide Yb2−xCoxO3. J. Alloy. Compd 479, 594–598 (2009).  https://doi.org/10.1016/j.jallcom.2009.01.007 CrossRefGoogle Scholar
  7. 7.
    L. Muresan, E.J. Popovici, E. Indrea, Structural and luminescence characterization of yttrium oxide based phosphor prepared by wet chemical method. J. Optoelectron. Adv. Mater. 13, 183–189 (2011)Google Scholar
  8. 8.
    S. Som, S.K. Sharma, T. Shripathi, Influences of doping and annealing on the structural and photoluminescence properties of Y2O3 nano phosphors. J. Fluoresc. 23, 439–450 (2013).  https://doi.org/10.1007/s10895-013-1160-7 CrossRefGoogle Scholar
  9. 9.
    R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shiva-kumara, Effect of calcinations temperature on structural, photoluminescence, and thermo-luminescence properties of Y2O3:Eu3+ nanophosphor. J. Phys. Chem. C 117, 1915–1924 (2013).  https://doi.org/10.1021/jp309684b.CrossRefGoogle Scholar
  10. 10.
    C.A. Kodaira, A.V.S. Lourenço, M.C.F.C. Felinto, E.M.R. Sanchez, F.J.O. Rios, L.A.O. Nunes, Bio labeling with nanoparticles based on Y2O3:Nd3+ and luminescence detection in the near-infrared. J. Lumin. 131, 727–731 (2011).  https://doi.org/10.1016/j.jlumin.2010.11.026 CrossRefGoogle Scholar
  11. 11.
    A. Vadivel Murugan, A.K. Viswanath, V. Ravi, B.A. Kakade, V. Saaminathan, Photo-luminescence studies of Eu3+doped Y2O3 nanophosphor prepared by microwave hydro thermal method. Appl. Phys. Lett. 89, 123120 (2006).  https://doi.org/10.1063/1.2356694 CrossRefGoogle Scholar
  12. 12.
    M.V. Nazarov, J.H. Kang, D.Y. Jeon, S.A. Bukesov, E.J. Popovici, Dependency of luminescence properties of Y2O3:Eu on the activator incorporation degree and lattice parameter. J. Soc. Inf. Disp. 13, 309–313 (2005).  https://doi.org/10.1889/1.1904932 CrossRefGoogle Scholar
  13. 13.
    P.A. Tanner, K.L. Wong, Synthesis and spectroscopy of lanthanide ion-doped Y2O3. J. Phys. Chem. B 108(1), 136–142 (2004).  https://doi.org/10.1021/jp035583o CrossRefGoogle Scholar
  14. 14.
    J.R. Jayaramaiah, K.R. Nagabhushana, B.N. Lakshminarasappac, Effect of lithium incorporation on luminescence properties of nanostructured Y2O3:Sm3+ thin films. J. Anal. Appl. Pyrolysis 123, 229–236 (2017).  https://doi.org/10.1016/j.jaap.2016.11.023 CrossRefGoogle Scholar
  15. 15.
    Y. Zhou, J. Lin, S. Wang, Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors. J. Solid State Chem. 171(1–2), 391–395 (2003).  https://doi.org/10.1016/S0022-4596(02)00219-0 CrossRefGoogle Scholar
  16. 16.
    A. Lupei, C. Tiseanu, C. Gheorghe, F. Voicu, Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics. Appl. Phys. B 108(4), 909–918 (2012).  https://doi.org/10.1007/s00340-012-5196-1 CrossRefGoogle Scholar
  17. 17.
    Z.G. Xia, D.M. Chen, Synthesis and luminescence properties of BaMoO4:Sm3+ phosphors. J. Am. Ceram. Soc. 93(5), 1397 (2010).  https://doi.org/10.1111/j.1551-2916.2009.03574.x Google Scholar
  18. 18.
    B.V. Rao, U. Rambabu, S. Buddhudu, Emission analysis of Sm3+ Ca4GdO(BO3)3 powder phosphor. Mater. Lett. 61(14–15), 2868 (2007).  https://doi.org/10.1016/j.matlet.2007.01.042 CrossRefGoogle Scholar
  19. 19.
    R. Cao, J. Huang, X. Ceng, Z. Hu, T. Chen, W. Hu, X. Zhang, Synthesis and emission properties of Ca3Nb2O8:Sm3+ phosphor and the emission improvement by Li+ ion. Optik 135, 124–128 (2017).  https://doi.org/10.1016/j.ijleo.2017.01.064 CrossRefGoogle Scholar
  20. 20.
    J. Chen, F. Gu, W. Shao, C. Li, Hydrothermal synthesis of ordered nanolamella compose Y2O3:Eu3+ architectures and their luminescent properties. Physica E 41, 304–308 (2008).  https://doi.org/10.1016/j.physe.2008.07.020 CrossRefGoogle Scholar
  21. 21.
    L.S. Chi, R.S. Liu, B.J. Lee, Synthesis of Y2O3:Eu, Bi red phosphors by homogeneous co-precipitation and their photoluminescence behaviors. J. Electrochem. Soc. 152, J93 (2005).  https://doi.org/10.1149/1.1940752 CrossRefGoogle Scholar
  22. 22.
    A. Boukerika, L. Guerbous, Annealing effects on structural and luminescence properties of red Eu3+-doped Y2O3 nanophosphors prepared by sol–gel method. J. Lumin. 145, 148–153 (2014).  https://doi.org/10.1016/j.jlumin.2013.07.037 CrossRefGoogle Scholar
  23. 23.
    A.N. Meza-Rocha, A. Speghini, M. Bettinelli, U. Caldiño, Orange and reddish-orange light emitting phosphors: Sm3+ and Sm3+/Eu3+ doped zinc phosphate glasses. J. Lumin. 167, 305–309 (2015).  https://doi.org/10.1016/j.jlumin.2015.06.050 CrossRefGoogle Scholar
  24. 24.
    Z. Zhu, G. Fu, Y. Yang, Z. Yang, P. Li, Tunable luminescence and energy transfer properties in Na3Bi(PO4)2:Eu3+, Tb3+, Dy3+, Sm3+ phosphors with high thermal stability. J. Lumin. 184, 96–109 (2017).  https://doi.org/10.1016/j.jlumin.2016.12.012 CrossRefGoogle Scholar
  25. 25.
    S. Som, S.K. Sharma, Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J. Phys. D (2012).  https://doi.org/10.1088/0022-3727/45/41/415102 Google Scholar
  26. 26.
    B.D. Cullity, Elements of X Ray Diffraction (Addition Wesley Publication Company, Reading, 1956)Google Scholar
  27. 27.
    K.A. Vishwakarma, M. Jayasimhadri, Pure orange color emitting Sm3+ doped BaNb2O6 phosphor for solid-state lighting applications. J. Lumin. 176, 112–117 (2016).  https://doi.org/10.1016/j.jlumin.2016.03.025 CrossRefGoogle Scholar
  28. 28.
    C.A. Kodairaa, R. Stefanib, A.S. Maiab, M.C.F.C. Felintoa, H.F. Brito, Optical investigation of Y2O3:Sm3+ nanophosphor prepared by combustion and Pechini methods. J. Lumin. 127, 616–622 (2007).  https://doi.org/10.1016/j.jlumin.2007.03.016 CrossRefGoogle Scholar
  29. 29.
    M. Manhas, V. Kumar, V.K. Singh, J. Sharma, R. Prakash, V. Sharma, A.K. Bedyal, H.C. Swart, A novel orange-red emitting Ba2Ca(BO3)2:Sm3+ phosphor to fill the amber gap in LEDs: synthesis, structural and luminescence characterizations. Curr. Appl. Phys. 17(11), 1369–1375 (2017).  https://doi.org/10.1016/j.cap.2017.07.015 CrossRefGoogle Scholar
  30. 30.
    T. Verma, S. Agrawal, Photoluminescent and thermoluminescent studies of Dy3+ and Eu3+ doped Y2O3 phosphors. J. Fluoresc. (2018).  https://doi.org/10.1007/s10895-018-2208-5 Google Scholar
  31. 31.
    M.E. Alvarez-Ramos, J. Alvarado-Rivera, M.E. Zayas, U. Caldiño, J. Hernández-Paredes, Yellow to orange-reddish glass phosphors: Sm3+, Tb3+ and Sm3+/Tb3+ in zinc tellurite-germanate glasses. Opt. Mater. (Amst.) 75, 88–93 (2018).  https://doi.org/10.1016/j.optmat.2017.09.033 CrossRefGoogle Scholar
  32. 32.
    X. Tan, Y. Wang, M. Zhang, Solvothermal synthesis, luminescence and energy transfer of Dy3+ and Sm3+ doped NaLa(WO4)2 nanocubes. J. Photochem. Photobiol. A 353, 65–70 (2018).  https://doi.org/10.1016/j.jphotochem.2017.11.002 CrossRefGoogle Scholar
  33. 33.
    J. Huang, J. Huang, Y. Lin, X. Gong, Y. Chen, Z. Luo, Y. Huang, Spectroscopic properties of Sm3+-doped NaGd(MoO4)2 crystal for visible laser application. J. Lumin. 187, 235–239 (2017).  https://doi.org/10.1016/j.jlumin.2016.11.078 CrossRefGoogle Scholar
  34. 34.
    Y. Wang, C. Lin, H. Zheng, D. Sun, L. Li, B. Chen, Fluorescent and chromatic properties of visible-emitting phosphor KLa(MoO4)2:Sm3+. J. Alloy. Compd 559, 123–128 (2013).  https://doi.org/10.1016/j.jallcom.2013.01.063 CrossRefGoogle Scholar
  35. 35.
    X. Yan, W. Li, K. Sun, A novel red emitting phosphor CaIn2O4:Eu3+, Sm3+ with a broadened near-ultraviolet absorption band for solid-state lighting. Mater. Res. Bull. 46(1), 87–91 (2011).  https://doi.org/10.1016/j.materresbull.2010.09.038 CrossRefGoogle Scholar
  36. 36.
    R. Yu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, H.S. Lee, K. Jang, S.S. Yi, Photo-luminescence characteristics of Sm3+ doped Ba3La(PO4)3 as new orange-red emitting phosphors. J. Lumin. 145, 717–722 (2014).  https://doi.org/10.1016/j.jlumin.2013.08.049 CrossRefGoogle Scholar
  37. 37.
    K. Jha, M. Jayasimhadri, Effective sensitization of Eu3+ and energy transfer in Sm3+/Eu3+ co-doped ZPBT glasses for CuPc based solar cell and w-LED applications. J. Lumin. 194, 102–107 (2018).  https://doi.org/10.1016/j.jlumin.2017.09.049 CrossRefGoogle Scholar
  38. 38.
    K. Naveen Kumar, L. Vijayalakshmi, Y.C. Ratnakaram, Energy transfer based photo luminescence properties of (Sm3+ + Eu3+): PEO + PVP polymer films for red luminescent display device application. Opt. Mater. 45, 148–155 (2015).  https://doi.org/10.1016/j.optmat.2015.03.025 CrossRefGoogle Scholar
  39. 39.
    G. Li, Y. Wei, W. Long, G. Xu, Photoluminescence properties, energy transfer and thermal stability of the novel red-emitting CaGd2(WO4)4:Eu3+Sm3+ phosphors. Mater. Res. Bull. 95, 86 (2017).  https://doi.org/10.1016/j.materresbull.2017.05.057 CrossRefGoogle Scholar
  40. 40.
    M. Ye, G. Zhou, L. Zhou, D. Lu, Y. Li, X. Xiong, K. Yang, M. Chen, Y. Pan, P. Wu, Z. Wang, H. Liu, Q. Xia, Luminescent properties and energy transfer process of Sm3+ Eu3+ codoped MY2(MoO4)4 (MCa, Sr and Ba) red-emitting phosphors. Solid State Sci. 59, 44–51 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Kemere, J. Sperga, U. Rogulis, G. Krieke, J. Grube, Luminescence properties of Eu, RE3+ (RE = Dy, Sm, Tb) co-doped oxyfluoride glasses and glass–ceramics. J. Lumin. 181, 25–30 (2017).  https://doi.org/10.1016/j.jlumin.2016.08.062 CrossRefGoogle Scholar
  42. 42.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994), pp. 1–9.  https://doi.org/10.1007/978-3-642-79017-1_1
  43. 43.
    N. Kiran, A.P. Baker, G. Wang, Synthesis and luminescence properties of MgO:Sm3+ phosphor for white light-emitting diodes. J. Mol. Struct. 1129, 211–215 (2017).  https://doi.org/10.1016/j.molstruc.2016.09.046 CrossRefGoogle Scholar
  44. 44.
    F. Yang, Y. Liu, X. Tian, G. Dong, Q. Yu, Luminescence properties of phosphate phosphor Ba3Y(PO4)3:Sm3+. J. Solid State Chem. 225, 19–23 (2015).  https://doi.org/10.1016/j.jssc.2014.11.025 CrossRefGoogle Scholar
  45. 45.
    B.V. Ratnam, M. Jayasimhadri, K. Jang, Luminescent properties of orange emissive Sm3+-activated thermally stable phosphate phosphor for optical devices. Spectrochim. Acta A 132, 563–567 (2014).  https://doi.org/10.1016/j.saa.2014.04.189 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology RaipurRaipurIndia

Personalised recommendations