Advertisement

Dielectric and magnetic properties of Nb substituted hexagonal Ba6Y2Ti4O17 (BYTO) perovskite oxides

  • Shiva Sundar Yadava
  • Laxman Singh
  • Minsoo Ji
  • Atendra Kumar
  • K. D. Mandal
  • Youngil Lee
Article
  • 129 Downloads

Abstract

In this study, niobium (Nb) substituted barium yttrium titanates, Ba6Y2Ti4−xNbxO17, (BYTNbO, x = 0.0, 0.05, 0.1, and 0.2), were synthesized via semi-wet route at a relatively low sintering temperature. Rietveld refinement of the X-ray diffraction patterns of BYTNbO confirmed that all the compositions have a hexagonal layered perovskite structure with the space group of P63/mmc. Nb5+ substitution at Ti-site in Ba6Y2Ti4O17 (BYTO) induces the formation of magnetically active ion of Ti3+ to enhance the magnetization. Remnant magnetization and magnetic coercivity were increased with decreasing temperature due to the disordered magnetic domains. The magnetization of Ba6Y2Ti3.9Nb0.1O17 also increased to 3.68 × 10−4 emu g−1 by Nb substitution in BYTO. The Curie temperature of x = 0.05, 0.1, and 0.2 were found to be 15.76, 17.77, and 14.12 K, respectively. The dielectric properties of all the compositions were investigated in the frequency range of 100–5.5 MHz. The dielectric constant (εr) was varied from 1.1 × 103 to 2.18 × 103 with the amount of Nb substitution in BYTO. An impedance spectroscopic study revealed the presence of semiconducting grain and an insulating grain boundary, both of which supports the internal barrier layer mechanism and are responsible for the high dielectric constant in these materials.

Notes

Acknowledgements

This study was supported by the National Research Foundation (NRF-2018R1A2B6001489) and Priority Research Centers Program (NRF-2009-0093818) in the Republic of Korea.

Supplementary material

10854_2018_9464_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1404 KB)

References

  1. 1.
    T. Phatungthane, P. Jaita, R. Sanjoom, T. Tunkasiri, G. Rujijanagul, Surf. Coat. Technol. 306, 229 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Zhu, J. Phys. 5, 3677 (2014)Google Scholar
  3. 3.
    F. Amaral, C. Rubinger, F. Henry, L. Costa, M. Valente, A. Barros-Timmons, J. Non-Cryst. Solids 354, 5321 (2008)CrossRefGoogle Scholar
  4. 4.
    R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, J. Solid State Chem. 183, 1209 (2010)CrossRefGoogle Scholar
  5. 5.
    V.S. Puli, S. Adireddy, M. Kothakonda, R. Elupula, D.B. Chrisey, J. Adv. Dielectr. 7, 1750017 (2017)CrossRefGoogle Scholar
  6. 6.
    V. Marques, A. Ries, A. Simoes, M. Ramirez, J.A. Varela, E. Longo, Ceram. Int. 33, 1187 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Jacobson, J. Hutchison, J. Solid State Chem. 35, 334 (1980)CrossRefGoogle Scholar
  8. 8.
    N. Floros, C. Michel, M. Hervieu, B. Raveau, Chem. Mater. 12, 3197 (2000)CrossRefGoogle Scholar
  9. 9.
    G. Liu, J. Greedan, J. Solid State Chem. 108, 371 (1994)CrossRefGoogle Scholar
  10. 10.
    D.C. Sinclair, J.M. Skakle, F.D. Morrison, R.I. Smith, T.P. Beales, J. Mater. Chem. 9, 1327 (1999)CrossRefGoogle Scholar
  11. 11.
    J. Gonzalez-Calbet, M. Parras, J. Alonso, M. Vallet-Regı, J. Solid State Chem. 106, 99 (1993)CrossRefGoogle Scholar
  12. 12.
    C.-F. Chen, G. King, R.M. Dickerson, P.A. Papin, S. Gupta, W.R. Kellogg, G. Wu, Nano Energy 13, 423 (2015)CrossRefGoogle Scholar
  13. 13.
    W. Derks, H. Van Hal, C. Langereis, Phys. C 156, 62 (1988)CrossRefGoogle Scholar
  14. 14.
    X. Kuang, X. Jing, C.-K. Loong, E.E. Lachowski, J.M.S. Skakle, A.R. West, Chem. Mater. 14, 4359 (2002)CrossRefGoogle Scholar
  15. 15.
    M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Alloys Compd. 493, 486 (2010)CrossRefGoogle Scholar
  16. 16.
    K.K. Wu, I. Brown, Acta Crystallogr. B 29, 2009 (1973)CrossRefGoogle Scholar
  17. 17.
    F. Tao, X. Wang, M. Gong, F. Lu, M. Allix, X. Kuang, L. Fang, J. Am. Ceram. Soc. 100, 1212 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Mallinson, J. Claridge, D. Iddles, T. Price, R. Ibberson, M. Allix, M. Rosseinsky, Chem. Mater. 18, 6227 (2006)CrossRefGoogle Scholar
  19. 19.
    Y.-K. Jun, W.-T. Moon, C.-M. Chang, H.-S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.-H. Hong, Solid State Commun. 135, 133 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, S. Khasa, J. Alloy. Compd. 722, 606 (2017)CrossRefGoogle Scholar
  21. 21.
    O. Singh, A. Agarwal, S. Sanghi, A. Das, J. Magn. Magn. Mater. 426, 369 (2017)CrossRefGoogle Scholar
  22. 22.
    R.K. Grubbs, E. Venturini, P. Clem, J. Richardson, B. Tuttle, G. Samara, Phys. Rev. B 72, 104111 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Chen, Y. Zhi, Y. Bao, X. Dai, Q. Jiang, J. Phys. 6, 3553 (1994)Google Scholar
  24. 24.
    S.H. Hong, D.Y. Kim, H.M. Park, Y.M. Kim, J. Am. Ceram. Soc. 90, 2118 (2007)CrossRefGoogle Scholar
  25. 25.
    F. Azough, R. Al-Saffar, R. Freer, J. Eur. Ceram. Soc. 18, 751 (1998)CrossRefGoogle Scholar
  26. 26.
    B. Cui, P. Yu, J. Tian, H. Guo, Z. Chang, Mater. Sci. Eng. 454, 667 (2007)CrossRefGoogle Scholar
  27. 27.
    A.A. Belik, J. Solid State Chem. 195, 32 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Vasala, M. Karppinen, Prog. Solid State Chem. 43, 1 (2015)CrossRefGoogle Scholar
  29. 29.
    P.K. Patel, K. Yadav, H. Singh, A. Yadav, J. Alloy. Compd. 591, 224 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Kim, S. Jung, M. Park, S.-I. Lee, H. Drew, H. Cheong, K. Kim, E. Choi, Phys. Rev. B 74, 052406 (2006)CrossRefGoogle Scholar
  31. 31.
    I.A. Sergienko, E. Dagotto, Phys. Rev. B 73, 094434 (2006)CrossRefGoogle Scholar
  32. 32.
    D. Okuyama, S. Ishiwata, Y. Takahashi, K. Yamauchi, S. Picozzi, K. Sugimoto, H. Sakai, M. Takata, R. Shimano, Y. Taguchi, Phys. Rev. B 84, 054440 (2011)CrossRefGoogle Scholar
  33. 33.
    I.A. Sergienko, C. Şen, E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006)CrossRefGoogle Scholar
  34. 34.
    R. Pązik, D. Kaczorowski, D. Hreniak, W. Stręk, W. Łojkowski, Chem. Phys. Lett. 452, 144 (2008)CrossRefGoogle Scholar
  35. 35.
    R. Cohen, H. Krakauer, Phys. Rev. B 42, 6416 (1990)CrossRefGoogle Scholar
  36. 36.
    A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, M. Abbate, F. De Groot, M. Czyzyk, J. Fuggle, Phys. Rev. B 46, 9841 (1992)CrossRefGoogle Scholar
  37. 37.
    A. Fujimori, I. Hase, Y. Tokura, M. Abbate, F. de Groot, J. Fuggle, H. Eisaki, S. Uchida, Phys. B 186, 981 (1993)CrossRefGoogle Scholar
  38. 38.
    H. Rukmini, R. Choudhary, D. Prabhakara, Mater. Lett. 44, 96 (2000)CrossRefGoogle Scholar
  39. 39.
    Q. Mei, C. Li, J. Guo, S. Huang, X. Zhang, H. Wu, Ceram. Int. 39, 9145 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Nano-Micro Lett. 8(4), 291 (2016)CrossRefGoogle Scholar
  41. 41.
    S.S. Yadava, A. Khare, P. Gautam, L. Singh, Y. Lee, K.D. Mandal, RSC Adv. 6, 10494 (2016)Google Scholar
  42. 42.
    H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  43. 43.
    R.C. Juan, Newsletter 26, 12 (2001)Google Scholar
  44. 44.
    S.D. Hutagalung, L.Y. Ooi, Z.A. Ahmad, J. Alloys Compd. 476, 477 (2009)CrossRefGoogle Scholar
  45. 45.
    S. Rani, N. Ahlawat, R. Kundu, R. Punia, S. Kumar, K.M. Sangwan, N. Ahlawat, Ferroelectrics 516, 156 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Zheng, D. Shi, L. Liu, G. Li, Q. Wang, L. Fang, B. Elouadi, J. Mater. Sci.: Mater. Electron. 25, 4058 (2014)CrossRefGoogle Scholar
  47. 47.
    C.-M. Wang, S.-Y. Lin, K.-S. Kao, Y.-C. Chen, S.-C. Weng, J. Alloys Compd. 491, 423 (2010)CrossRefGoogle Scholar
  48. 48.
    L. Ni, X. Chen, X. Liu, R. Hou, Solid State Commun. 139, 45 (2006)CrossRefGoogle Scholar
  49. 49.
    J. Li, A. Sleight, M. Subramanian, Solid State Commun. 135, 260 (2005)CrossRefGoogle Scholar
  50. 50.
    V.S. Puli, C. Orozco, R. Picchini, C. Ramana, Mater. Chem. Phys. 184, 82 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Gopalan, C.-H. Wong, V. Balu, J.-H. Lee, J.H. Han, R. Mohammedali, J.C. Lee, Appl. Phys. Lett. 75, 2123 (1999)CrossRefGoogle Scholar
  52. 52.
    H. El-Mallah, Acta Phys. Pol. A 122, 174 (2012)CrossRefGoogle Scholar
  53. 53.
    T. Barbier, C. Autret-Lambert, C. Honstrette, F. Gervais, M. Lethiecq, Mater. Res. Bull. 47, 4427 (2012)CrossRefGoogle Scholar
  54. 54.
    T. Hayashi, Met. Powder Rep. 52, 40 (1997)CrossRefGoogle Scholar
  55. 55.
    H.M. Chan, M.R. Harmer, D.M. Smyth, J. Am. Ceram. Soc. 69, 507 (1986)CrossRefGoogle Scholar
  56. 56.
    E. Brzozowski, M. Castro, J. Mater. Process. Technol. 168, 464 (2005)CrossRefGoogle Scholar
  57. 57.
    X. Dong, K. Wang, J. Wan, J. Zhu, J.-M. Liu, J. Appl. Phys. 103, 094101 (2008)CrossRefGoogle Scholar
  58. 58.
    S. Yatsuya, T. Hayashi, H. Akoh, E. Nakamura, A. Tasaki, Jpn. J. Appl. Phys. 17, 355 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shiva Sundar Yadava
    • 1
  • Laxman Singh
    • 1
  • Minsoo Ji
    • 1
  • Atendra Kumar
    • 2
  • K. D. Mandal
    • 2
  • Youngil Lee
    • 1
  1. 1.Department of ChemistryUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of ChemistryIndian Institute of Technology (B.H.U.)VaranasiIndia

Personalised recommendations