Advertisement

Low-temperature sintering LiZnTiMn ferrite ceramics: synthesis, microstructure, and enhanced ferromagnetic properties with CuO–V2O5 additive

  • Fei Xie
  • Lijun Jia
  • Fang Xu
  • Gongwen Gan
  • Jie Li
  • Yilei Li
  • Yuanxun Li
  • Huaiwu Zhang
Article
  • 57 Downloads

Abstract

In this study, a new method was developed for the coexistence of different grain sizes and the densification of low-temperature sintered Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 (LiZnTiMn) ferrite ceramics. Excellent gyromagnetic performance was realized for the LiZnTiMn ferrite ceramics by controlling the amount of CuO–V2O5 sintering additive. In particular, the appropriate amount of CuO–V2O5 sintering additive effectively restrained the abnormal grain growth and enhanced the densification of low-temperature sintering ferrite ceramics. In addition, scanning electron microscopy images indicated different grain sizes (large grains of ~ 10 µm and small grains of ~ 2 µm) because of the existence of V2O5–CuV2O6 eutectic compounds. The addition of the optimum amount of CuO–V2O5 resulted in LiZnTiMn ferrite ceramics with high saturation magnetization and low coercivity (ferromagnetic resonance line width was narrow). For the sample with 0.5 wt% CuO–V2O5 additive, a pure spinel phase was synthesized at a low firing temperature (~ 900 °C). In addition, the sample possessed significantly enhanced microwave ferromagnetic properties: Ms = 78.56 emu/g, Br/Bs = 0.85, Hc = 167 A/m, and △H = 167 Oe, making it useful as a new type of gyromagnetic material. These newly developed ceramic materials could be suitable candidates for microwave low-temperature co-fired ceramic gyromagnetic devices.

Notes

Acknowledgements

This work was partially supported by the National Key Research and Development Plan under Grant No. 2017YFB0406300, the National Natural Science Foundation of China under Grant No. 51572041, the Technical Plan Projects of Sichuan Province under Grant Nos. 2016GZ0245, 2016GZ0261, and 2017HH0052, and by the International S&T Cooperation Program of China under Grant No. 2012DFR10730.

References

  1. 1.
    P. Heinselman, D. Ladue, D.M. Kingfield, R. Hoffman, Tornado warning decisions using phased-array radar data, Weather Forecast 30, 57–78 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Boles, D.J. Carlson, C. Weigand, MMIC based phased array radar T/R modules, in IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, 2011, pp. 1–4Google Scholar
  3. 3.
    P.L. Heinselman, D.S. Ladue, H. Lazrus, Exploring impacts of rapid-scan radar data on NWS warning decisions, Weather Forecast. 27 (2012).—1031–1044CrossRefGoogle Scholar
  4. 4.
    S.J. Huang, Y.L. Chen, H.Y. Chu, P.N. Chen, A fully-Integrated 77 GHz phase-array radar system with 1TX/4RX frontend and digital beamforming technique, in Symposium on VLSI Circuits, C294–C295, 2013Google Scholar
  5. 5.
    P.S. Huang, H.C. Lu, Improvement of the phase shifter in 90° power splitter for UWB applications. IEEE Microw. Wirel. Compon. Lett. 22, 621–623 (2012)CrossRefGoogle Scholar
  6. 6.
    V.G. Harris, M.M. Ferrites, IEEE Trans. Magn. 48, 1075–1104 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Rusch, T. Klein, S. Beer, T. Zwick, A short distance, CW-radar sensor at 77 GHz in LTCC for industrial applications. J. Infrared Millim. Terahertz Waves 34, 856–865 (2013)CrossRefGoogle Scholar
  8. 8.
    V.K. Palukuru, J. Perantie, J. Jantti, H. Jantunen, Tunable microwave phase shifters using LTCC technology with integrated BST thick films. Int. J. Appl. Ceram. Technol. 9, 11–17 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Jensen, V. Krozer, C. Kjaergaard, Realisation of microstrip junction circulator using LTCC technology. Electron. Lett. 47, 111–113 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Zhou, H. Wang, L.X. Pang, C.A. Randall, X. Yao, Bi2O3–MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric. J. Am. Ceram. Soc. 92, 2242–2246 (2010)CrossRefGoogle Scholar
  11. 11.
    A.Y. Borisevich, P.K. Davies, Effect of V2O5 doping on the sintering and dielectric properties of M-phase Li1+x-yNb1−x−3yTix+4yO3 ceramics. J. Am. Ceram. Soc. 87, 1047–1052 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Wersing, Microwave ceramics for resonator and filters. Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)CrossRefGoogle Scholar
  13. 13.
    J. Slama, A. Gruskova, M. Soka, M. Usakova, V. Jancarik, Analysis of magnetic properties of substituted Li ferrites. IEEE Trans. Magn. 46, 455–458 (2010)CrossRefGoogle Scholar
  14. 14.
    N.K. Saxena, N. Kumar, P.K.S. Pourush, Study of LiTiMg-ferrite radome for the application of satellite communication. J. Magn. Magn. Mater. 322, 2641–2646 (2010)CrossRefGoogle Scholar
  15. 15.
    A.N. Yusoff, M.H. Abdullah, Microwave electromagnetic and absorption properties of some LiZn ferrites. J. Magn. Magn. Mater. 269, 271–280 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, Effects of annealing on phase evolution, microstructure, and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite. J. Electron. Mater. 41, 3082–3086 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Xie, L. Jia, Z. Zheng, H. Zhang, Influences of Li2O–B2O3–SiO2 glass addition on microstructural and magnetic properties of LiZnTi-ferrites, In Magnetics Conference, 2015, pp. 1Google Scholar
  18. 18.
    F. Xie, L. Jia, Y. Zhao, J. Li, T. Zhou, Y. Liao, H. Zhang, Low-temperature sintering and ferrimagnetic properties of LiZnTiMn ferrites with Bi2O3–CuO eutectic mixture, J. Alloys Compd. 695, 3233–3238 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Xu, Y. Liao, D. Zhang, T. Zhou, J. Li, G. Gan, H. Zhang, Synthesis of highly uniform and compact lithium zinc ferrite ceramics via an efficient low temperature approach, Inorg. Chem. 56, 4512–4520 (2017)CrossRefGoogle Scholar
  20. 20.
    J.X. Bi, C.F. Xing, C.H. Yang, H.T. Wu, X.S. Jiang, Low temperature sintering and microwave dielectric properties of MnZrNb2O8 ceramics with H3BO3 addition. J. Mater. Sci.: Mater. Electron. 27, 6564–6569 (2016)Google Scholar
  21. 21.
    D. Chen, Y. Liu, Y. Li, W. Zhong, H. Zhang, Low-temperature sintering of M-type barium ferrite with BaCu(B2O5) additive. J. Magn. Magn. Mater. 324, 449–452 (2012)CrossRefGoogle Scholar
  22. 22.
    D.H. Kang, K.C. Nam, H.J. Cha, Effect of Li2O–V2O5 on the low temperature sintering and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics. J. Eur. Ceram. Soc. 26, 2117–2121 (2006)CrossRefGoogle Scholar
  23. 23.
    J.B. Lim, M.H. Kim, J.C. Kim, S. Nahm, J.H. Paik, J.H. Kim, Effect of BaCu(B2O5) additive on the sintering temperature and microwave dielectric properties of BaTi4O9 ceramics. Jpn. J. Appl. Phys. 45, 447–465 (2006)CrossRefGoogle Scholar
  24. 24.
    Y. Kang, K. Matsumoto, T. Karaki, M. Adachi, Microstructure and piezoelectric properties of (K0.5Na0.5)NbO3–BaTiO3 lead-free piezoelectric ceramics modified by B2O3–CuO. J. Am. Ceram. Soc. 93, 3823–3827 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, W. Chen, Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. Ceram. Int. 41, 555–565 (2015)CrossRefGoogle Scholar
  26. 26.
    J.H. Jean, C.H. Lee, Processing and properties of low-fire Ni–Cu–Zn ferrite with V2O5. Jpn. J. Appl. Phys. 40, 2232–2236 (2001)CrossRefGoogle Scholar
  27. 27.
    N. Rezlescu, E. Rezlescu, P.D. Popa, M.L. Craus, L. Rezlescu, Copper ions influence on the physical properties of a magnesium-zinc ferrite. J. Magn. Magn. Mater. 182, 199–206 (1998)CrossRefGoogle Scholar
  28. 28.
    Z. Fan, Preparation and properties of copper vanadate materials. J. Adv. Phys. Chem. 4, 52–65 (2015)CrossRefGoogle Scholar
  29. 29.
    T. Hillel, Y. Ein-Eli, Copper vanadate as promising high voltage cathodes for Li thermal batteries. J. Power Sources 229, 112–116 (2013)CrossRefGoogle Scholar
  30. 30.
    T. Zhou, D. Zhang, L. Jia, F. Bai, L. Jin, Y. Liao, T. Wen, C. Liu, H. Su, N. Jia, Effect of NiZn ferrite nanoparticles upon the structure and magnetic and gyromagnetic properties of low-temperature processed LiZnTi ferrites. J. Phys. Chem. C 119, 13207–13214 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Kavanloui, B. Hashemi, Effect of B2O3 on the densification and magnetic properties of Li–Zn ferrite. Mater. Des. 32, 4257–4261 (2011)CrossRefGoogle Scholar
  32. 32.
    C. Liu, Z. Lan, X. Jiang, Z. Yu, K. Sun, L. Li, P. Liu, Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 320, 1335–1339 (2008)CrossRefGoogle Scholar
  33. 33.
    A.K. Srivastava, M.J. Patni, Ferromagnetic resonance of gadolinium doped calcium vanadium garnets. J. Appl. Phys. 81, 1863–1867 (1997)CrossRefGoogle Scholar
  34. 34.
    T. Zhou, H. Zhang, L. Jia, Y. Liao, Z. Zhong, F. Bai, H. Su, J. Li, L. Jin, C. Liu, Enhanced ferromagnetic properties of low temperature sintering LiZnTi ferrites with Li2O–B2O3–SiO2–CaO–Al2O3 glass addition. J. Alloys Compd. 620, 421–426 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations