Advertisement

Luminescence and temperature sensing properties of Er3+/Yb3+ co-doped 0.70Na0.5Bi0.5TiO3–0.30SrTiO3 ferroelectric ceramics

  • Xue Gong
  • Yanxia Li
  • Ying Zhang
  • Xusheng Wang
Article
  • 43 Downloads

Abstract

Er3+/Yb3+ co-doped 0.70Na0.5Bi0.5TiO3–0.30SrTiO3 (NBT–ST: Er3+/Yb3+) ferroelectric ceramics were synthesized by a solid state reaction method. Under 980 nm radiation excitation, a strong green emission band was obtained which was two-photon up-conversion mechanism. The radiative transition of (4S3/2, 2H11/2) to 4I15/2 of Er3+ indicated a temperature dependent behavior. With a change of the ratio of Er3+/Yb3+, the optimal up-conversion emission was obtained in the NBT–ST:0.005Er3+/0.125Yb3+ ceramics. In a temperature range of 83–643 K, the maximum sensitivity based on fluorescence intensity ratio technique (FIR524/548) was approximately 0.0053 K−1 at 543 K. It indicated that NBT–ST: Er3+/Yb3+ ferroelectric ceramics would be a potential candidate for temperature sensors.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51572195).

References

  1. 1.
    J.C. Boyer, F. Vetrone, J. Capobianco, A. Speghini, M. Bettinelli, Chem. Phys. Lett. 390, 403–407 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, S.O. Kasap, J. Mater. Sci.: Mater. Electron. 18, S231–S234 (2007)Google Scholar
  3. 3.
    D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, T. Sun, J. Appl. Phys. 111, 104111 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Zou, Y. Hu, X. Zhu, D. Peng, X. Chai, X. Wang, B. Liu, D. Shen, J. Mater. Sci.: Mater. Electron. 28, 11921–11925 (2017)Google Scholar
  5. 5.
    D.C. Nguyen, G.E. Faulkner, M. Dulick, Appl. Opt. 28, 3553 (1989)CrossRefGoogle Scholar
  6. 6.
    Y. Miao, P. Wang, H. Guan, Y. Chen, J. Mater. Sci.: Mater. Electron. 26, 5748–5752 (2015)Google Scholar
  7. 7.
    J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, M. Bettinelli, Chem. Phys. Lett. 390, 403 (2004)CrossRefGoogle Scholar
  8. 8.
    G. Ding, F. Gao, G. Wu, D. Bao, J. Appl. Phys. 109, 123101 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Gu, Y. Li, F. Zheng, X. Wang, J. Mater. Sci.: Mater. Electron. 28, 501–506 (2017)Google Scholar
  10. 10.
    X. Chai, J. Li, Y. Zhang, X. Wang, RSC Adv. 6, 64072 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Li, C. Feng, W. Yao, Mater. Lett. 58, 1194–1198 (2004)CrossRefGoogle Scholar
  12. 12.
    P. Du, L. Luo, W. Li, Y. Zhang, H. Chen, Mater. Sci. Eng. B 178, 1219–1223 (2013)CrossRefGoogle Scholar
  13. 13.
    U. Huang, L. Gao, Y. Hu, H. Da, J. Mater. Sci.: Mater. Electron. 18, 605–609 (2007)Google Scholar
  14. 14.
    F. Gao, L. Cheng, R.Z. Hong, J.J. Liu, Y.H. Yao, C.S. Tian, J. Mater. Sci.: Mater. Electron. 19, 1228–1232 (2008)Google Scholar
  15. 15.
    R.D. Shannon, C.T. Prewitt, Acta Cryst. B25, 925 (1969)CrossRefGoogle Scholar
  16. 16.
    A.A. Khan, H.A. Hussain, Spectrochim Acta A 60, 2087–2092 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, J. Zhang, X. Zhang, Chem. Phys. Lett. 434, 237–240 (2007)CrossRefGoogle Scholar
  18. 18.
    F. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Alloys Compd. 552, 463–468 (2013)CrossRefGoogle Scholar
  19. 19.
    Q. Cao, P. Feng, H. Zou, J. Li, X. Wang, X. Yao, J. Adv. Dielectr. 4, 450018 (2014)CrossRefGoogle Scholar
  20. 20.
    B.H. Park, B.S. Kang, S.D. Bu, Nat. Lett. 401, 682–684 (1999)CrossRefGoogle Scholar
  21. 21.
    V.K. Rai, Appl. Phys. B 88, 297–303 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Yang, C. Mi, F. Yu, Ceram. Int. 40, 875–880 (2014)Google Scholar
  23. 23.
    Q. Liu, Y. Li, H. Zou, J. Li, X. Hui, X. Wang, H. Zhao, X. Yao, Ferroelectrics 488, 45–53 (2015)CrossRefGoogle Scholar
  24. 24.
    N. Rakov, G.S. Maciel, Sens. Actuators B 164, 96–100 (2012)CrossRefGoogle Scholar
  25. 25.
    S.H. Zhou, K.M. Deng, X.T. Wei, Opt. Commun. 291, 138–142 (2013)CrossRefGoogle Scholar
  26. 26.
    S.Q. Zhou, C.R. Li, Z.F. Liu, Opt. Mater. 30, 513–516 (2007)CrossRefGoogle Scholar
  27. 27.
    P.D. Santos, M.T. Araujo, A.S. Gouveia-Neto, J.M. Neto, Appl. Phy. Lett. 73, 578–580 (1998)CrossRefGoogle Scholar
  28. 28.
    P. Du, L. Luo, W. Li, Q. Yue, J. Appl. Phys. 116, 014102 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Materials Research Laboratory, School of Materials Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations